| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isconn.1 |  |-  X = U. J | 
						
							| 2 |  | id |  |-  ( j = J -> j = J ) | 
						
							| 3 |  | fveq2 |  |-  ( j = J -> ( Clsd ` j ) = ( Clsd ` J ) ) | 
						
							| 4 | 2 3 | ineq12d |  |-  ( j = J -> ( j i^i ( Clsd ` j ) ) = ( J i^i ( Clsd ` J ) ) ) | 
						
							| 5 |  | unieq |  |-  ( j = J -> U. j = U. J ) | 
						
							| 6 | 5 1 | eqtr4di |  |-  ( j = J -> U. j = X ) | 
						
							| 7 | 6 | preq2d |  |-  ( j = J -> { (/) , U. j } = { (/) , X } ) | 
						
							| 8 | 4 7 | eqeq12d |  |-  ( j = J -> ( ( j i^i ( Clsd ` j ) ) = { (/) , U. j } <-> ( J i^i ( Clsd ` J ) ) = { (/) , X } ) ) | 
						
							| 9 |  | df-conn |  |-  Conn = { j e. Top | ( j i^i ( Clsd ` j ) ) = { (/) , U. j } } | 
						
							| 10 | 8 9 | elrab2 |  |-  ( J e. Conn <-> ( J e. Top /\ ( J i^i ( Clsd ` J ) ) = { (/) , X } ) ) |