| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isconn.1 |  |-  X = U. J | 
						
							| 2 | 1 | isconn |  |-  ( J e. Conn <-> ( J e. Top /\ ( J i^i ( Clsd ` J ) ) = { (/) , X } ) ) | 
						
							| 3 |  | eqss |  |-  ( ( J i^i ( Clsd ` J ) ) = { (/) , X } <-> ( ( J i^i ( Clsd ` J ) ) C_ { (/) , X } /\ { (/) , X } C_ ( J i^i ( Clsd ` J ) ) ) ) | 
						
							| 4 |  | 0opn |  |-  ( J e. Top -> (/) e. J ) | 
						
							| 5 |  | 0cld |  |-  ( J e. Top -> (/) e. ( Clsd ` J ) ) | 
						
							| 6 | 4 5 | elind |  |-  ( J e. Top -> (/) e. ( J i^i ( Clsd ` J ) ) ) | 
						
							| 7 | 1 | topopn |  |-  ( J e. Top -> X e. J ) | 
						
							| 8 | 1 | topcld |  |-  ( J e. Top -> X e. ( Clsd ` J ) ) | 
						
							| 9 | 7 8 | elind |  |-  ( J e. Top -> X e. ( J i^i ( Clsd ` J ) ) ) | 
						
							| 10 | 6 9 | prssd |  |-  ( J e. Top -> { (/) , X } C_ ( J i^i ( Clsd ` J ) ) ) | 
						
							| 11 | 10 | biantrud |  |-  ( J e. Top -> ( ( J i^i ( Clsd ` J ) ) C_ { (/) , X } <-> ( ( J i^i ( Clsd ` J ) ) C_ { (/) , X } /\ { (/) , X } C_ ( J i^i ( Clsd ` J ) ) ) ) ) | 
						
							| 12 | 3 11 | bitr4id |  |-  ( J e. Top -> ( ( J i^i ( Clsd ` J ) ) = { (/) , X } <-> ( J i^i ( Clsd ` J ) ) C_ { (/) , X } ) ) | 
						
							| 13 | 12 | pm5.32i |  |-  ( ( J e. Top /\ ( J i^i ( Clsd ` J ) ) = { (/) , X } ) <-> ( J e. Top /\ ( J i^i ( Clsd ` J ) ) C_ { (/) , X } ) ) | 
						
							| 14 | 2 13 | bitri |  |-  ( J e. Conn <-> ( J e. Top /\ ( J i^i ( Clsd ` J ) ) C_ { (/) , X } ) ) |