Step |
Hyp |
Ref |
Expression |
1 |
|
iscph.v |
|- V = ( Base ` W ) |
2 |
|
iscph.h |
|- ., = ( .i ` W ) |
3 |
|
iscph.n |
|- N = ( norm ` W ) |
4 |
|
iscph.f |
|- F = ( Scalar ` W ) |
5 |
|
iscph.k |
|- K = ( Base ` F ) |
6 |
|
elin |
|- ( W e. ( PreHil i^i NrmMod ) <-> ( W e. PreHil /\ W e. NrmMod ) ) |
7 |
6
|
anbi1i |
|- ( ( W e. ( PreHil i^i NrmMod ) /\ F = ( CCfld |`s K ) ) <-> ( ( W e. PreHil /\ W e. NrmMod ) /\ F = ( CCfld |`s K ) ) ) |
8 |
|
df-3an |
|- ( ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) <-> ( ( W e. PreHil /\ W e. NrmMod ) /\ F = ( CCfld |`s K ) ) ) |
9 |
7 8
|
bitr4i |
|- ( ( W e. ( PreHil i^i NrmMod ) /\ F = ( CCfld |`s K ) ) <-> ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) ) |
10 |
9
|
anbi1i |
|- ( ( ( W e. ( PreHil i^i NrmMod ) /\ F = ( CCfld |`s K ) ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) <-> ( ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) |
11 |
|
fvexd |
|- ( w = W -> ( Scalar ` w ) e. _V ) |
12 |
|
fvexd |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) e. _V ) |
13 |
|
simplr |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> f = ( Scalar ` w ) ) |
14 |
|
simpll |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> w = W ) |
15 |
14
|
fveq2d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( Scalar ` w ) = ( Scalar ` W ) ) |
16 |
15 4
|
eqtr4di |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( Scalar ` w ) = F ) |
17 |
13 16
|
eqtrd |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> f = F ) |
18 |
|
simpr |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> k = ( Base ` f ) ) |
19 |
17
|
fveq2d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( Base ` f ) = ( Base ` F ) ) |
20 |
19 5
|
eqtr4di |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( Base ` f ) = K ) |
21 |
18 20
|
eqtrd |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> k = K ) |
22 |
21
|
oveq2d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( CCfld |`s k ) = ( CCfld |`s K ) ) |
23 |
17 22
|
eqeq12d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( f = ( CCfld |`s k ) <-> F = ( CCfld |`s K ) ) ) |
24 |
21
|
ineq1d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( k i^i ( 0 [,) +oo ) ) = ( K i^i ( 0 [,) +oo ) ) ) |
25 |
24
|
imaeq2d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) = ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) ) |
26 |
25 21
|
sseq12d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k <-> ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K ) ) |
27 |
14
|
fveq2d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( norm ` w ) = ( norm ` W ) ) |
28 |
27 3
|
eqtr4di |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( norm ` w ) = N ) |
29 |
14
|
fveq2d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( Base ` w ) = ( Base ` W ) ) |
30 |
29 1
|
eqtr4di |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( Base ` w ) = V ) |
31 |
14
|
fveq2d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( .i ` w ) = ( .i ` W ) ) |
32 |
31 2
|
eqtr4di |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( .i ` w ) = ., ) |
33 |
32
|
oveqd |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( x ( .i ` w ) x ) = ( x ., x ) ) |
34 |
33
|
fveq2d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( sqrt ` ( x ( .i ` w ) x ) ) = ( sqrt ` ( x ., x ) ) ) |
35 |
30 34
|
mpteq12dv |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |
36 |
28 35
|
eqeq12d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) <-> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) |
37 |
23 26 36
|
3anbi123d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) <-> ( F = ( CCfld |`s K ) /\ ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) |
38 |
|
3anass |
|- ( ( F = ( CCfld |`s K ) /\ ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) <-> ( F = ( CCfld |`s K ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) |
39 |
37 38
|
bitrdi |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) <-> ( F = ( CCfld |`s K ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) ) |
40 |
12 39
|
sbcied |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) <-> ( F = ( CCfld |`s K ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) ) |
41 |
11 40
|
sbcied |
|- ( w = W -> ( [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) <-> ( F = ( CCfld |`s K ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) ) |
42 |
|
df-cph |
|- CPreHil = { w e. ( PreHil i^i NrmMod ) | [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) } |
43 |
41 42
|
elrab2 |
|- ( W e. CPreHil <-> ( W e. ( PreHil i^i NrmMod ) /\ ( F = ( CCfld |`s K ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) ) |
44 |
|
anass |
|- ( ( ( W e. ( PreHil i^i NrmMod ) /\ F = ( CCfld |`s K ) ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) <-> ( W e. ( PreHil i^i NrmMod ) /\ ( F = ( CCfld |`s K ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) ) |
45 |
43 44
|
bitr4i |
|- ( W e. CPreHil <-> ( ( W e. ( PreHil i^i NrmMod ) /\ F = ( CCfld |`s K ) ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) |
46 |
|
3anass |
|- ( ( ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) /\ ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) <-> ( ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) |
47 |
10 45 46
|
3bitr4i |
|- ( W e. CPreHil <-> ( ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) /\ ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) |