| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscph.v |
|- V = ( Base ` W ) |
| 2 |
|
iscph.h |
|- ., = ( .i ` W ) |
| 3 |
|
iscph.n |
|- N = ( norm ` W ) |
| 4 |
|
iscph.f |
|- F = ( Scalar ` W ) |
| 5 |
|
iscph.k |
|- K = ( Base ` F ) |
| 6 |
|
elin |
|- ( W e. ( PreHil i^i NrmMod ) <-> ( W e. PreHil /\ W e. NrmMod ) ) |
| 7 |
6
|
anbi1i |
|- ( ( W e. ( PreHil i^i NrmMod ) /\ F = ( CCfld |`s K ) ) <-> ( ( W e. PreHil /\ W e. NrmMod ) /\ F = ( CCfld |`s K ) ) ) |
| 8 |
|
df-3an |
|- ( ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) <-> ( ( W e. PreHil /\ W e. NrmMod ) /\ F = ( CCfld |`s K ) ) ) |
| 9 |
7 8
|
bitr4i |
|- ( ( W e. ( PreHil i^i NrmMod ) /\ F = ( CCfld |`s K ) ) <-> ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) ) |
| 10 |
9
|
anbi1i |
|- ( ( ( W e. ( PreHil i^i NrmMod ) /\ F = ( CCfld |`s K ) ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) <-> ( ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) |
| 11 |
|
fvexd |
|- ( w = W -> ( Scalar ` w ) e. _V ) |
| 12 |
|
fvexd |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) e. _V ) |
| 13 |
|
simplr |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> f = ( Scalar ` w ) ) |
| 14 |
|
simpll |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> w = W ) |
| 15 |
14
|
fveq2d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( Scalar ` w ) = ( Scalar ` W ) ) |
| 16 |
15 4
|
eqtr4di |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( Scalar ` w ) = F ) |
| 17 |
13 16
|
eqtrd |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> f = F ) |
| 18 |
|
simpr |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> k = ( Base ` f ) ) |
| 19 |
17
|
fveq2d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( Base ` f ) = ( Base ` F ) ) |
| 20 |
19 5
|
eqtr4di |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( Base ` f ) = K ) |
| 21 |
18 20
|
eqtrd |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> k = K ) |
| 22 |
21
|
oveq2d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( CCfld |`s k ) = ( CCfld |`s K ) ) |
| 23 |
17 22
|
eqeq12d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( f = ( CCfld |`s k ) <-> F = ( CCfld |`s K ) ) ) |
| 24 |
21
|
ineq1d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( k i^i ( 0 [,) +oo ) ) = ( K i^i ( 0 [,) +oo ) ) ) |
| 25 |
24
|
imaeq2d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) = ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) ) |
| 26 |
25 21
|
sseq12d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k <-> ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K ) ) |
| 27 |
14
|
fveq2d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( norm ` w ) = ( norm ` W ) ) |
| 28 |
27 3
|
eqtr4di |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( norm ` w ) = N ) |
| 29 |
14
|
fveq2d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( Base ` w ) = ( Base ` W ) ) |
| 30 |
29 1
|
eqtr4di |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( Base ` w ) = V ) |
| 31 |
14
|
fveq2d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( .i ` w ) = ( .i ` W ) ) |
| 32 |
31 2
|
eqtr4di |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( .i ` w ) = ., ) |
| 33 |
32
|
oveqd |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( x ( .i ` w ) x ) = ( x ., x ) ) |
| 34 |
33
|
fveq2d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( sqrt ` ( x ( .i ` w ) x ) ) = ( sqrt ` ( x ., x ) ) ) |
| 35 |
30 34
|
mpteq12dv |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |
| 36 |
28 35
|
eqeq12d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) <-> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) |
| 37 |
23 26 36
|
3anbi123d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) <-> ( F = ( CCfld |`s K ) /\ ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) |
| 38 |
|
3anass |
|- ( ( F = ( CCfld |`s K ) /\ ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) <-> ( F = ( CCfld |`s K ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) |
| 39 |
37 38
|
bitrdi |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) <-> ( F = ( CCfld |`s K ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) ) |
| 40 |
12 39
|
sbcied |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) <-> ( F = ( CCfld |`s K ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) ) |
| 41 |
11 40
|
sbcied |
|- ( w = W -> ( [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) <-> ( F = ( CCfld |`s K ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) ) |
| 42 |
|
df-cph |
|- CPreHil = { w e. ( PreHil i^i NrmMod ) | [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) } |
| 43 |
41 42
|
elrab2 |
|- ( W e. CPreHil <-> ( W e. ( PreHil i^i NrmMod ) /\ ( F = ( CCfld |`s K ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) ) |
| 44 |
|
anass |
|- ( ( ( W e. ( PreHil i^i NrmMod ) /\ F = ( CCfld |`s K ) ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) <-> ( W e. ( PreHil i^i NrmMod ) /\ ( F = ( CCfld |`s K ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) ) |
| 45 |
43 44
|
bitr4i |
|- ( W e. CPreHil <-> ( ( W e. ( PreHil i^i NrmMod ) /\ F = ( CCfld |`s K ) ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) |
| 46 |
|
3anass |
|- ( ( ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) /\ ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) <-> ( ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) |
| 47 |
10 45 46
|
3bitr4i |
|- ( W e. CPreHil <-> ( ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) /\ ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) |