Step |
Hyp |
Ref |
Expression |
1 |
|
iscringd.1 |
|- ( ph -> G e. AbelOp ) |
2 |
|
iscringd.2 |
|- ( ph -> X = ran G ) |
3 |
|
iscringd.3 |
|- ( ph -> H : ( X X. X ) --> X ) |
4 |
|
iscringd.4 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( x H y ) H z ) = ( x H ( y H z ) ) ) |
5 |
|
iscringd.5 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) ) |
6 |
|
iscringd.6 |
|- ( ph -> U e. X ) |
7 |
|
iscringd.7 |
|- ( ( ph /\ y e. X ) -> ( y H U ) = y ) |
8 |
|
iscringd.8 |
|- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x H y ) = ( y H x ) ) |
9 |
|
id |
|- ( ( z e. X /\ y e. X /\ x e. X ) -> ( z e. X /\ y e. X /\ x e. X ) ) |
10 |
9
|
3com13 |
|- ( ( x e. X /\ y e. X /\ z e. X ) -> ( z e. X /\ y e. X /\ x e. X ) ) |
11 |
|
eleq1 |
|- ( w = z -> ( w e. X <-> z e. X ) ) |
12 |
11
|
3anbi1d |
|- ( w = z -> ( ( w e. X /\ y e. X /\ x e. X ) <-> ( z e. X /\ y e. X /\ x e. X ) ) ) |
13 |
12
|
anbi2d |
|- ( w = z -> ( ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) <-> ( ph /\ ( z e. X /\ y e. X /\ x e. X ) ) ) ) |
14 |
|
oveq2 |
|- ( w = z -> ( ( x G y ) H w ) = ( ( x G y ) H z ) ) |
15 |
|
oveq2 |
|- ( w = z -> ( x H w ) = ( x H z ) ) |
16 |
|
oveq2 |
|- ( w = z -> ( y H w ) = ( y H z ) ) |
17 |
15 16
|
oveq12d |
|- ( w = z -> ( ( x H w ) G ( y H w ) ) = ( ( x H z ) G ( y H z ) ) ) |
18 |
14 17
|
eqeq12d |
|- ( w = z -> ( ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) <-> ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) ) |
19 |
13 18
|
imbi12d |
|- ( w = z -> ( ( ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) ) <-> ( ( ph /\ ( z e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) ) ) |
20 |
|
eleq1 |
|- ( z = x -> ( z e. X <-> x e. X ) ) |
21 |
20
|
3anbi3d |
|- ( z = x -> ( ( w e. X /\ y e. X /\ z e. X ) <-> ( w e. X /\ y e. X /\ x e. X ) ) ) |
22 |
21
|
anbi2d |
|- ( z = x -> ( ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) <-> ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) ) ) |
23 |
|
oveq1 |
|- ( z = x -> ( z G y ) = ( x G y ) ) |
24 |
23
|
oveq1d |
|- ( z = x -> ( ( z G y ) H w ) = ( ( x G y ) H w ) ) |
25 |
|
oveq1 |
|- ( z = x -> ( z H w ) = ( x H w ) ) |
26 |
25
|
oveq1d |
|- ( z = x -> ( ( z H w ) G ( y H w ) ) = ( ( x H w ) G ( y H w ) ) ) |
27 |
24 26
|
eqeq12d |
|- ( z = x -> ( ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) <-> ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) ) ) |
28 |
22 27
|
imbi12d |
|- ( z = x -> ( ( ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) ) <-> ( ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) ) ) ) |
29 |
|
eleq1 |
|- ( x = w -> ( x e. X <-> w e. X ) ) |
30 |
29
|
3anbi1d |
|- ( x = w -> ( ( x e. X /\ y e. X /\ z e. X ) <-> ( w e. X /\ y e. X /\ z e. X ) ) ) |
31 |
30
|
anbi2d |
|- ( x = w -> ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) <-> ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) ) ) |
32 |
|
oveq2 |
|- ( x = w -> ( ( z G y ) H x ) = ( ( z G y ) H w ) ) |
33 |
|
oveq2 |
|- ( x = w -> ( z H x ) = ( z H w ) ) |
34 |
|
oveq2 |
|- ( x = w -> ( y H x ) = ( y H w ) ) |
35 |
33 34
|
oveq12d |
|- ( x = w -> ( ( z H x ) G ( y H x ) ) = ( ( z H w ) G ( y H w ) ) ) |
36 |
32 35
|
eqeq12d |
|- ( x = w -> ( ( ( z G y ) H x ) = ( ( z H x ) G ( y H x ) ) <-> ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) ) ) |
37 |
31 36
|
imbi12d |
|- ( x = w -> ( ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H x ) = ( ( z H x ) G ( y H x ) ) ) <-> ( ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) ) ) ) |
38 |
1
|
adantr |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> G e. AbelOp ) |
39 |
|
simpr3 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> z e. X ) |
40 |
2
|
adantr |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> X = ran G ) |
41 |
39 40
|
eleqtrd |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> z e. ran G ) |
42 |
|
simpr2 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> y e. X ) |
43 |
42 40
|
eleqtrd |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> y e. ran G ) |
44 |
|
eqid |
|- ran G = ran G |
45 |
44
|
ablocom |
|- ( ( G e. AbelOp /\ z e. ran G /\ y e. ran G ) -> ( z G y ) = ( y G z ) ) |
46 |
38 41 43 45
|
syl3anc |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( z G y ) = ( y G z ) ) |
47 |
46
|
oveq1d |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H x ) = ( ( y G z ) H x ) ) |
48 |
|
simpr1 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> x e. X ) |
49 |
|
ablogrpo |
|- ( G e. AbelOp -> G e. GrpOp ) |
50 |
38 49
|
syl |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> G e. GrpOp ) |
51 |
44
|
grpocl |
|- ( ( G e. GrpOp /\ y e. ran G /\ z e. ran G ) -> ( y G z ) e. ran G ) |
52 |
50 43 41 51
|
syl3anc |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( y G z ) e. ran G ) |
53 |
52 40
|
eleqtrrd |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( y G z ) e. X ) |
54 |
48 53
|
jca |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x e. X /\ ( y G z ) e. X ) ) |
55 |
|
ovex |
|- ( y G z ) e. _V |
56 |
|
eleq1 |
|- ( w = ( y G z ) -> ( w e. X <-> ( y G z ) e. X ) ) |
57 |
56
|
anbi2d |
|- ( w = ( y G z ) -> ( ( x e. X /\ w e. X ) <-> ( x e. X /\ ( y G z ) e. X ) ) ) |
58 |
57
|
anbi2d |
|- ( w = ( y G z ) -> ( ( ph /\ ( x e. X /\ w e. X ) ) <-> ( ph /\ ( x e. X /\ ( y G z ) e. X ) ) ) ) |
59 |
|
oveq2 |
|- ( w = ( y G z ) -> ( x H w ) = ( x H ( y G z ) ) ) |
60 |
|
oveq1 |
|- ( w = ( y G z ) -> ( w H x ) = ( ( y G z ) H x ) ) |
61 |
59 60
|
eqeq12d |
|- ( w = ( y G z ) -> ( ( x H w ) = ( w H x ) <-> ( x H ( y G z ) ) = ( ( y G z ) H x ) ) ) |
62 |
58 61
|
imbi12d |
|- ( w = ( y G z ) -> ( ( ( ph /\ ( x e. X /\ w e. X ) ) -> ( x H w ) = ( w H x ) ) <-> ( ( ph /\ ( x e. X /\ ( y G z ) e. X ) ) -> ( x H ( y G z ) ) = ( ( y G z ) H x ) ) ) ) |
63 |
|
eleq1 |
|- ( y = w -> ( y e. X <-> w e. X ) ) |
64 |
63
|
anbi2d |
|- ( y = w -> ( ( x e. X /\ y e. X ) <-> ( x e. X /\ w e. X ) ) ) |
65 |
64
|
anbi2d |
|- ( y = w -> ( ( ph /\ ( x e. X /\ y e. X ) ) <-> ( ph /\ ( x e. X /\ w e. X ) ) ) ) |
66 |
|
oveq2 |
|- ( y = w -> ( x H y ) = ( x H w ) ) |
67 |
|
oveq1 |
|- ( y = w -> ( y H x ) = ( w H x ) ) |
68 |
66 67
|
eqeq12d |
|- ( y = w -> ( ( x H y ) = ( y H x ) <-> ( x H w ) = ( w H x ) ) ) |
69 |
65 68
|
imbi12d |
|- ( y = w -> ( ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x H y ) = ( y H x ) ) <-> ( ( ph /\ ( x e. X /\ w e. X ) ) -> ( x H w ) = ( w H x ) ) ) ) |
70 |
69 8
|
chvarvv |
|- ( ( ph /\ ( x e. X /\ w e. X ) ) -> ( x H w ) = ( w H x ) ) |
71 |
55 62 70
|
vtocl |
|- ( ( ph /\ ( x e. X /\ ( y G z ) e. X ) ) -> ( x H ( y G z ) ) = ( ( y G z ) H x ) ) |
72 |
54 71
|
syldan |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H ( y G z ) ) = ( ( y G z ) H x ) ) |
73 |
8
|
3adantr3 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H y ) = ( y H x ) ) |
74 |
|
eleq1 |
|- ( y = z -> ( y e. X <-> z e. X ) ) |
75 |
74
|
anbi2d |
|- ( y = z -> ( ( x e. X /\ y e. X ) <-> ( x e. X /\ z e. X ) ) ) |
76 |
75
|
anbi2d |
|- ( y = z -> ( ( ph /\ ( x e. X /\ y e. X ) ) <-> ( ph /\ ( x e. X /\ z e. X ) ) ) ) |
77 |
|
oveq2 |
|- ( y = z -> ( x H y ) = ( x H z ) ) |
78 |
|
oveq1 |
|- ( y = z -> ( y H x ) = ( z H x ) ) |
79 |
77 78
|
eqeq12d |
|- ( y = z -> ( ( x H y ) = ( y H x ) <-> ( x H z ) = ( z H x ) ) ) |
80 |
76 79
|
imbi12d |
|- ( y = z -> ( ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x H y ) = ( y H x ) ) <-> ( ( ph /\ ( x e. X /\ z e. X ) ) -> ( x H z ) = ( z H x ) ) ) ) |
81 |
80 8
|
chvarvv |
|- ( ( ph /\ ( x e. X /\ z e. X ) ) -> ( x H z ) = ( z H x ) ) |
82 |
81
|
3adantr2 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H z ) = ( z H x ) ) |
83 |
73 82
|
oveq12d |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( x H y ) G ( x H z ) ) = ( ( y H x ) G ( z H x ) ) ) |
84 |
3
|
adantr |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> H : ( X X. X ) --> X ) |
85 |
84 42 48
|
fovrnd |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( y H x ) e. X ) |
86 |
85 40
|
eleqtrd |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( y H x ) e. ran G ) |
87 |
84 39 48
|
fovrnd |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( z H x ) e. X ) |
88 |
87 40
|
eleqtrd |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( z H x ) e. ran G ) |
89 |
44
|
ablocom |
|- ( ( G e. AbelOp /\ ( y H x ) e. ran G /\ ( z H x ) e. ran G ) -> ( ( y H x ) G ( z H x ) ) = ( ( z H x ) G ( y H x ) ) ) |
90 |
38 86 88 89
|
syl3anc |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( y H x ) G ( z H x ) ) = ( ( z H x ) G ( y H x ) ) ) |
91 |
5 83 90
|
3eqtrd |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H ( y G z ) ) = ( ( z H x ) G ( y H x ) ) ) |
92 |
47 72 91
|
3eqtr2d |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H x ) = ( ( z H x ) G ( y H x ) ) ) |
93 |
37 92
|
chvarvv |
|- ( ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) ) |
94 |
28 93
|
chvarvv |
|- ( ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) ) |
95 |
19 94
|
chvarvv |
|- ( ( ph /\ ( z e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) |
96 |
10 95
|
sylan2 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) |
97 |
6
|
adantr |
|- ( ( ph /\ y e. X ) -> U e. X ) |
98 |
|
oveq1 |
|- ( x = U -> ( x H y ) = ( U H y ) ) |
99 |
|
oveq2 |
|- ( x = U -> ( y H x ) = ( y H U ) ) |
100 |
98 99
|
eqeq12d |
|- ( x = U -> ( ( x H y ) = ( y H x ) <-> ( U H y ) = ( y H U ) ) ) |
101 |
100
|
imbi2d |
|- ( x = U -> ( ( ( ph /\ y e. X ) -> ( x H y ) = ( y H x ) ) <-> ( ( ph /\ y e. X ) -> ( U H y ) = ( y H U ) ) ) ) |
102 |
8
|
an12s |
|- ( ( x e. X /\ ( ph /\ y e. X ) ) -> ( x H y ) = ( y H x ) ) |
103 |
102
|
ex |
|- ( x e. X -> ( ( ph /\ y e. X ) -> ( x H y ) = ( y H x ) ) ) |
104 |
101 103
|
vtoclga |
|- ( U e. X -> ( ( ph /\ y e. X ) -> ( U H y ) = ( y H U ) ) ) |
105 |
97 104
|
mpcom |
|- ( ( ph /\ y e. X ) -> ( U H y ) = ( y H U ) ) |
106 |
105 7
|
eqtrd |
|- ( ( ph /\ y e. X ) -> ( U H y ) = y ) |
107 |
1 2 3 4 5 96 6 106 7
|
isrngod |
|- ( ph -> <. G , H >. e. RingOps ) |
108 |
2
|
eleq2d |
|- ( ph -> ( x e. X <-> x e. ran G ) ) |
109 |
2
|
eleq2d |
|- ( ph -> ( y e. X <-> y e. ran G ) ) |
110 |
108 109
|
anbi12d |
|- ( ph -> ( ( x e. X /\ y e. X ) <-> ( x e. ran G /\ y e. ran G ) ) ) |
111 |
110
|
biimpar |
|- ( ( ph /\ ( x e. ran G /\ y e. ran G ) ) -> ( x e. X /\ y e. X ) ) |
112 |
111 8
|
syldan |
|- ( ( ph /\ ( x e. ran G /\ y e. ran G ) ) -> ( x H y ) = ( y H x ) ) |
113 |
112
|
ralrimivva |
|- ( ph -> A. x e. ran G A. y e. ran G ( x H y ) = ( y H x ) ) |
114 |
|
rnexg |
|- ( G e. AbelOp -> ran G e. _V ) |
115 |
1 114
|
syl |
|- ( ph -> ran G e. _V ) |
116 |
2 115
|
eqeltrd |
|- ( ph -> X e. _V ) |
117 |
116 116
|
xpexd |
|- ( ph -> ( X X. X ) e. _V ) |
118 |
3 117
|
fexd |
|- ( ph -> H e. _V ) |
119 |
|
iscom2 |
|- ( ( G e. AbelOp /\ H e. _V ) -> ( <. G , H >. e. Com2 <-> A. x e. ran G A. y e. ran G ( x H y ) = ( y H x ) ) ) |
120 |
1 118 119
|
syl2anc |
|- ( ph -> ( <. G , H >. e. Com2 <-> A. x e. ran G A. y e. ran G ( x H y ) = ( y H x ) ) ) |
121 |
113 120
|
mpbird |
|- ( ph -> <. G , H >. e. Com2 ) |
122 |
|
iscrngo |
|- ( <. G , H >. e. CRingOps <-> ( <. G , H >. e. RingOps /\ <. G , H >. e. Com2 ) ) |
123 |
107 121 122
|
sylanbrc |
|- ( ph -> <. G , H >. e. CRingOps ) |