| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iscringd.1 | 
							 |-  ( ph -> G e. AbelOp )  | 
						
						
							| 2 | 
							
								
							 | 
							iscringd.2 | 
							 |-  ( ph -> X = ran G )  | 
						
						
							| 3 | 
							
								
							 | 
							iscringd.3 | 
							 |-  ( ph -> H : ( X X. X ) --> X )  | 
						
						
							| 4 | 
							
								
							 | 
							iscringd.4 | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( x H y ) H z ) = ( x H ( y H z ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							iscringd.5 | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							iscringd.6 | 
							 |-  ( ph -> U e. X )  | 
						
						
							| 7 | 
							
								
							 | 
							iscringd.7 | 
							 |-  ( ( ph /\ y e. X ) -> ( y H U ) = y )  | 
						
						
							| 8 | 
							
								
							 | 
							iscringd.8 | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x H y ) = ( y H x ) )  | 
						
						
							| 9 | 
							
								
							 | 
							id | 
							 |-  ( ( z e. X /\ y e. X /\ x e. X ) -> ( z e. X /\ y e. X /\ x e. X ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							3com13 | 
							 |-  ( ( x e. X /\ y e. X /\ z e. X ) -> ( z e. X /\ y e. X /\ x e. X ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eleq1 | 
							 |-  ( w = z -> ( w e. X <-> z e. X ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							3anbi1d | 
							 |-  ( w = z -> ( ( w e. X /\ y e. X /\ x e. X ) <-> ( z e. X /\ y e. X /\ x e. X ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							anbi2d | 
							 |-  ( w = z -> ( ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) <-> ( ph /\ ( z e. X /\ y e. X /\ x e. X ) ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							oveq2 | 
							 |-  ( w = z -> ( ( x G y ) H w ) = ( ( x G y ) H z ) )  | 
						
						
							| 15 | 
							
								
							 | 
							oveq2 | 
							 |-  ( w = z -> ( x H w ) = ( x H z ) )  | 
						
						
							| 16 | 
							
								
							 | 
							oveq2 | 
							 |-  ( w = z -> ( y H w ) = ( y H z ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							oveq12d | 
							 |-  ( w = z -> ( ( x H w ) G ( y H w ) ) = ( ( x H z ) G ( y H z ) ) )  | 
						
						
							| 18 | 
							
								14 17
							 | 
							eqeq12d | 
							 |-  ( w = z -> ( ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) <-> ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) )  | 
						
						
							| 19 | 
							
								13 18
							 | 
							imbi12d | 
							 |-  ( w = z -> ( ( ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) ) <-> ( ( ph /\ ( z e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							eleq1 | 
							 |-  ( z = x -> ( z e. X <-> x e. X ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							3anbi3d | 
							 |-  ( z = x -> ( ( w e. X /\ y e. X /\ z e. X ) <-> ( w e. X /\ y e. X /\ x e. X ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							anbi2d | 
							 |-  ( z = x -> ( ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) <-> ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							oveq1 | 
							 |-  ( z = x -> ( z G y ) = ( x G y ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							oveq1d | 
							 |-  ( z = x -> ( ( z G y ) H w ) = ( ( x G y ) H w ) )  | 
						
						
							| 25 | 
							
								
							 | 
							oveq1 | 
							 |-  ( z = x -> ( z H w ) = ( x H w ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							oveq1d | 
							 |-  ( z = x -> ( ( z H w ) G ( y H w ) ) = ( ( x H w ) G ( y H w ) ) )  | 
						
						
							| 27 | 
							
								24 26
							 | 
							eqeq12d | 
							 |-  ( z = x -> ( ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) <-> ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) ) )  | 
						
						
							| 28 | 
							
								22 27
							 | 
							imbi12d | 
							 |-  ( z = x -> ( ( ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) ) <-> ( ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							eleq1 | 
							 |-  ( x = w -> ( x e. X <-> w e. X ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							3anbi1d | 
							 |-  ( x = w -> ( ( x e. X /\ y e. X /\ z e. X ) <-> ( w e. X /\ y e. X /\ z e. X ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							anbi2d | 
							 |-  ( x = w -> ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) <-> ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = w -> ( ( z G y ) H x ) = ( ( z G y ) H w ) )  | 
						
						
							| 33 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = w -> ( z H x ) = ( z H w ) )  | 
						
						
							| 34 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = w -> ( y H x ) = ( y H w ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							oveq12d | 
							 |-  ( x = w -> ( ( z H x ) G ( y H x ) ) = ( ( z H w ) G ( y H w ) ) )  | 
						
						
							| 36 | 
							
								32 35
							 | 
							eqeq12d | 
							 |-  ( x = w -> ( ( ( z G y ) H x ) = ( ( z H x ) G ( y H x ) ) <-> ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) ) )  | 
						
						
							| 37 | 
							
								31 36
							 | 
							imbi12d | 
							 |-  ( x = w -> ( ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H x ) = ( ( z H x ) G ( y H x ) ) ) <-> ( ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) ) ) )  | 
						
						
							| 38 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> G e. AbelOp )  | 
						
						
							| 39 | 
							
								
							 | 
							simpr3 | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> z e. X )  | 
						
						
							| 40 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> X = ran G )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							eleqtrd | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> z e. ran G )  | 
						
						
							| 42 | 
							
								
							 | 
							simpr2 | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> y e. X )  | 
						
						
							| 43 | 
							
								42 40
							 | 
							eleqtrd | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> y e. ran G )  | 
						
						
							| 44 | 
							
								
							 | 
							eqid | 
							 |-  ran G = ran G  | 
						
						
							| 45 | 
							
								44
							 | 
							ablocom | 
							 |-  ( ( G e. AbelOp /\ z e. ran G /\ y e. ran G ) -> ( z G y ) = ( y G z ) )  | 
						
						
							| 46 | 
							
								38 41 43 45
							 | 
							syl3anc | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( z G y ) = ( y G z ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							oveq1d | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H x ) = ( ( y G z ) H x ) )  | 
						
						
							| 48 | 
							
								
							 | 
							simpr1 | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> x e. X )  | 
						
						
							| 49 | 
							
								
							 | 
							ablogrpo | 
							 |-  ( G e. AbelOp -> G e. GrpOp )  | 
						
						
							| 50 | 
							
								38 49
							 | 
							syl | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> G e. GrpOp )  | 
						
						
							| 51 | 
							
								44
							 | 
							grpocl | 
							 |-  ( ( G e. GrpOp /\ y e. ran G /\ z e. ran G ) -> ( y G z ) e. ran G )  | 
						
						
							| 52 | 
							
								50 43 41 51
							 | 
							syl3anc | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( y G z ) e. ran G )  | 
						
						
							| 53 | 
							
								52 40
							 | 
							eleqtrrd | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( y G z ) e. X )  | 
						
						
							| 54 | 
							
								48 53
							 | 
							jca | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x e. X /\ ( y G z ) e. X ) )  | 
						
						
							| 55 | 
							
								
							 | 
							ovex | 
							 |-  ( y G z ) e. _V  | 
						
						
							| 56 | 
							
								
							 | 
							eleq1 | 
							 |-  ( w = ( y G z ) -> ( w e. X <-> ( y G z ) e. X ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							anbi2d | 
							 |-  ( w = ( y G z ) -> ( ( x e. X /\ w e. X ) <-> ( x e. X /\ ( y G z ) e. X ) ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							anbi2d | 
							 |-  ( w = ( y G z ) -> ( ( ph /\ ( x e. X /\ w e. X ) ) <-> ( ph /\ ( x e. X /\ ( y G z ) e. X ) ) ) )  | 
						
						
							| 59 | 
							
								
							 | 
							oveq2 | 
							 |-  ( w = ( y G z ) -> ( x H w ) = ( x H ( y G z ) ) )  | 
						
						
							| 60 | 
							
								
							 | 
							oveq1 | 
							 |-  ( w = ( y G z ) -> ( w H x ) = ( ( y G z ) H x ) )  | 
						
						
							| 61 | 
							
								59 60
							 | 
							eqeq12d | 
							 |-  ( w = ( y G z ) -> ( ( x H w ) = ( w H x ) <-> ( x H ( y G z ) ) = ( ( y G z ) H x ) ) )  | 
						
						
							| 62 | 
							
								58 61
							 | 
							imbi12d | 
							 |-  ( w = ( y G z ) -> ( ( ( ph /\ ( x e. X /\ w e. X ) ) -> ( x H w ) = ( w H x ) ) <-> ( ( ph /\ ( x e. X /\ ( y G z ) e. X ) ) -> ( x H ( y G z ) ) = ( ( y G z ) H x ) ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							eleq1 | 
							 |-  ( y = w -> ( y e. X <-> w e. X ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							anbi2d | 
							 |-  ( y = w -> ( ( x e. X /\ y e. X ) <-> ( x e. X /\ w e. X ) ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							anbi2d | 
							 |-  ( y = w -> ( ( ph /\ ( x e. X /\ y e. X ) ) <-> ( ph /\ ( x e. X /\ w e. X ) ) ) )  | 
						
						
							| 66 | 
							
								
							 | 
							oveq2 | 
							 |-  ( y = w -> ( x H y ) = ( x H w ) )  | 
						
						
							| 67 | 
							
								
							 | 
							oveq1 | 
							 |-  ( y = w -> ( y H x ) = ( w H x ) )  | 
						
						
							| 68 | 
							
								66 67
							 | 
							eqeq12d | 
							 |-  ( y = w -> ( ( x H y ) = ( y H x ) <-> ( x H w ) = ( w H x ) ) )  | 
						
						
							| 69 | 
							
								65 68
							 | 
							imbi12d | 
							 |-  ( y = w -> ( ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x H y ) = ( y H x ) ) <-> ( ( ph /\ ( x e. X /\ w e. X ) ) -> ( x H w ) = ( w H x ) ) ) )  | 
						
						
							| 70 | 
							
								69 8
							 | 
							chvarvv | 
							 |-  ( ( ph /\ ( x e. X /\ w e. X ) ) -> ( x H w ) = ( w H x ) )  | 
						
						
							| 71 | 
							
								55 62 70
							 | 
							vtocl | 
							 |-  ( ( ph /\ ( x e. X /\ ( y G z ) e. X ) ) -> ( x H ( y G z ) ) = ( ( y G z ) H x ) )  | 
						
						
							| 72 | 
							
								54 71
							 | 
							syldan | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H ( y G z ) ) = ( ( y G z ) H x ) )  | 
						
						
							| 73 | 
							
								8
							 | 
							3adantr3 | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H y ) = ( y H x ) )  | 
						
						
							| 74 | 
							
								
							 | 
							eleq1 | 
							 |-  ( y = z -> ( y e. X <-> z e. X ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							anbi2d | 
							 |-  ( y = z -> ( ( x e. X /\ y e. X ) <-> ( x e. X /\ z e. X ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							anbi2d | 
							 |-  ( y = z -> ( ( ph /\ ( x e. X /\ y e. X ) ) <-> ( ph /\ ( x e. X /\ z e. X ) ) ) )  | 
						
						
							| 77 | 
							
								
							 | 
							oveq2 | 
							 |-  ( y = z -> ( x H y ) = ( x H z ) )  | 
						
						
							| 78 | 
							
								
							 | 
							oveq1 | 
							 |-  ( y = z -> ( y H x ) = ( z H x ) )  | 
						
						
							| 79 | 
							
								77 78
							 | 
							eqeq12d | 
							 |-  ( y = z -> ( ( x H y ) = ( y H x ) <-> ( x H z ) = ( z H x ) ) )  | 
						
						
							| 80 | 
							
								76 79
							 | 
							imbi12d | 
							 |-  ( y = z -> ( ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x H y ) = ( y H x ) ) <-> ( ( ph /\ ( x e. X /\ z e. X ) ) -> ( x H z ) = ( z H x ) ) ) )  | 
						
						
							| 81 | 
							
								80 8
							 | 
							chvarvv | 
							 |-  ( ( ph /\ ( x e. X /\ z e. X ) ) -> ( x H z ) = ( z H x ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							3adantr2 | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H z ) = ( z H x ) )  | 
						
						
							| 83 | 
							
								73 82
							 | 
							oveq12d | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( x H y ) G ( x H z ) ) = ( ( y H x ) G ( z H x ) ) )  | 
						
						
							| 84 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> H : ( X X. X ) --> X )  | 
						
						
							| 85 | 
							
								84 42 48
							 | 
							fovcdmd | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( y H x ) e. X )  | 
						
						
							| 86 | 
							
								85 40
							 | 
							eleqtrd | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( y H x ) e. ran G )  | 
						
						
							| 87 | 
							
								84 39 48
							 | 
							fovcdmd | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( z H x ) e. X )  | 
						
						
							| 88 | 
							
								87 40
							 | 
							eleqtrd | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( z H x ) e. ran G )  | 
						
						
							| 89 | 
							
								44
							 | 
							ablocom | 
							 |-  ( ( G e. AbelOp /\ ( y H x ) e. ran G /\ ( z H x ) e. ran G ) -> ( ( y H x ) G ( z H x ) ) = ( ( z H x ) G ( y H x ) ) )  | 
						
						
							| 90 | 
							
								38 86 88 89
							 | 
							syl3anc | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( y H x ) G ( z H x ) ) = ( ( z H x ) G ( y H x ) ) )  | 
						
						
							| 91 | 
							
								5 83 90
							 | 
							3eqtrd | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H ( y G z ) ) = ( ( z H x ) G ( y H x ) ) )  | 
						
						
							| 92 | 
							
								47 72 91
							 | 
							3eqtr2d | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H x ) = ( ( z H x ) G ( y H x ) ) )  | 
						
						
							| 93 | 
							
								37 92
							 | 
							chvarvv | 
							 |-  ( ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) )  | 
						
						
							| 94 | 
							
								28 93
							 | 
							chvarvv | 
							 |-  ( ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) )  | 
						
						
							| 95 | 
							
								19 94
							 | 
							chvarvv | 
							 |-  ( ( ph /\ ( z e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) )  | 
						
						
							| 96 | 
							
								10 95
							 | 
							sylan2 | 
							 |-  ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) )  | 
						
						
							| 97 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ph /\ y e. X ) -> U e. X )  | 
						
						
							| 98 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = U -> ( x H y ) = ( U H y ) )  | 
						
						
							| 99 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = U -> ( y H x ) = ( y H U ) )  | 
						
						
							| 100 | 
							
								98 99
							 | 
							eqeq12d | 
							 |-  ( x = U -> ( ( x H y ) = ( y H x ) <-> ( U H y ) = ( y H U ) ) )  | 
						
						
							| 101 | 
							
								100
							 | 
							imbi2d | 
							 |-  ( x = U -> ( ( ( ph /\ y e. X ) -> ( x H y ) = ( y H x ) ) <-> ( ( ph /\ y e. X ) -> ( U H y ) = ( y H U ) ) ) )  | 
						
						
							| 102 | 
							
								8
							 | 
							an12s | 
							 |-  ( ( x e. X /\ ( ph /\ y e. X ) ) -> ( x H y ) = ( y H x ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							ex | 
							 |-  ( x e. X -> ( ( ph /\ y e. X ) -> ( x H y ) = ( y H x ) ) )  | 
						
						
							| 104 | 
							
								101 103
							 | 
							vtoclga | 
							 |-  ( U e. X -> ( ( ph /\ y e. X ) -> ( U H y ) = ( y H U ) ) )  | 
						
						
							| 105 | 
							
								97 104
							 | 
							mpcom | 
							 |-  ( ( ph /\ y e. X ) -> ( U H y ) = ( y H U ) )  | 
						
						
							| 106 | 
							
								105 7
							 | 
							eqtrd | 
							 |-  ( ( ph /\ y e. X ) -> ( U H y ) = y )  | 
						
						
							| 107 | 
							
								1 2 3 4 5 96 6 106 7
							 | 
							isrngod | 
							 |-  ( ph -> <. G , H >. e. RingOps )  | 
						
						
							| 108 | 
							
								2
							 | 
							eleq2d | 
							 |-  ( ph -> ( x e. X <-> x e. ran G ) )  | 
						
						
							| 109 | 
							
								2
							 | 
							eleq2d | 
							 |-  ( ph -> ( y e. X <-> y e. ran G ) )  | 
						
						
							| 110 | 
							
								108 109
							 | 
							anbi12d | 
							 |-  ( ph -> ( ( x e. X /\ y e. X ) <-> ( x e. ran G /\ y e. ran G ) ) )  | 
						
						
							| 111 | 
							
								110
							 | 
							biimpar | 
							 |-  ( ( ph /\ ( x e. ran G /\ y e. ran G ) ) -> ( x e. X /\ y e. X ) )  | 
						
						
							| 112 | 
							
								111 8
							 | 
							syldan | 
							 |-  ( ( ph /\ ( x e. ran G /\ y e. ran G ) ) -> ( x H y ) = ( y H x ) )  | 
						
						
							| 113 | 
							
								112
							 | 
							ralrimivva | 
							 |-  ( ph -> A. x e. ran G A. y e. ran G ( x H y ) = ( y H x ) )  | 
						
						
							| 114 | 
							
								
							 | 
							rnexg | 
							 |-  ( G e. AbelOp -> ran G e. _V )  | 
						
						
							| 115 | 
							
								1 114
							 | 
							syl | 
							 |-  ( ph -> ran G e. _V )  | 
						
						
							| 116 | 
							
								2 115
							 | 
							eqeltrd | 
							 |-  ( ph -> X e. _V )  | 
						
						
							| 117 | 
							
								116 116
							 | 
							xpexd | 
							 |-  ( ph -> ( X X. X ) e. _V )  | 
						
						
							| 118 | 
							
								3 117
							 | 
							fexd | 
							 |-  ( ph -> H e. _V )  | 
						
						
							| 119 | 
							
								
							 | 
							iscom2 | 
							 |-  ( ( G e. AbelOp /\ H e. _V ) -> ( <. G , H >. e. Com2 <-> A. x e. ran G A. y e. ran G ( x H y ) = ( y H x ) ) )  | 
						
						
							| 120 | 
							
								1 118 119
							 | 
							syl2anc | 
							 |-  ( ph -> ( <. G , H >. e. Com2 <-> A. x e. ran G A. y e. ran G ( x H y ) = ( y H x ) ) )  | 
						
						
							| 121 | 
							
								113 120
							 | 
							mpbird | 
							 |-  ( ph -> <. G , H >. e. Com2 )  | 
						
						
							| 122 | 
							
								
							 | 
							iscrngo | 
							 |-  ( <. G , H >. e. CRingOps <-> ( <. G , H >. e. RingOps /\ <. G , H >. e. Com2 ) )  | 
						
						
							| 123 | 
							
								107 121 122
							 | 
							sylanbrc | 
							 |-  ( ph -> <. G , H >. e. CRingOps )  |