Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ringmgp.g | |- G = ( mulGrp ` R ) |
|
Assertion | iscrng | |- ( R e. CRing <-> ( R e. Ring /\ G e. CMnd ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringmgp.g | |- G = ( mulGrp ` R ) |
|
2 | fveq2 | |- ( r = R -> ( mulGrp ` r ) = ( mulGrp ` R ) ) |
|
3 | 2 1 | eqtr4di | |- ( r = R -> ( mulGrp ` r ) = G ) |
4 | 3 | eleq1d | |- ( r = R -> ( ( mulGrp ` r ) e. CMnd <-> G e. CMnd ) ) |
5 | df-cring | |- CRing = { r e. Ring | ( mulGrp ` r ) e. CMnd } |
|
6 | 4 5 | elrab2 | |- ( R e. CRing <-> ( R e. Ring /\ G e. CMnd ) ) |