Metamath Proof Explorer


Theorem iscrng

Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypothesis ringmgp.g
|- G = ( mulGrp ` R )
Assertion iscrng
|- ( R e. CRing <-> ( R e. Ring /\ G e. CMnd ) )

Proof

Step Hyp Ref Expression
1 ringmgp.g
 |-  G = ( mulGrp ` R )
2 fveq2
 |-  ( r = R -> ( mulGrp ` r ) = ( mulGrp ` R ) )
3 2 1 eqtr4di
 |-  ( r = R -> ( mulGrp ` r ) = G )
4 3 eleq1d
 |-  ( r = R -> ( ( mulGrp ` r ) e. CMnd <-> G e. CMnd ) )
5 df-cring
 |-  CRing = { r e. Ring | ( mulGrp ` r ) e. CMnd }
6 4 5 elrab2
 |-  ( R e. CRing <-> ( R e. Ring /\ G e. CMnd ) )