Step |
Hyp |
Ref |
Expression |
1 |
|
isringd.b |
|- ( ph -> B = ( Base ` R ) ) |
2 |
|
isringd.p |
|- ( ph -> .+ = ( +g ` R ) ) |
3 |
|
isringd.t |
|- ( ph -> .x. = ( .r ` R ) ) |
4 |
|
isringd.g |
|- ( ph -> R e. Grp ) |
5 |
|
isringd.c |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( x .x. y ) e. B ) |
6 |
|
isringd.a |
|- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .x. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
7 |
|
isringd.d |
|- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
8 |
|
isringd.e |
|- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
9 |
|
isringd.u |
|- ( ph -> .1. e. B ) |
10 |
|
isringd.i |
|- ( ( ph /\ x e. B ) -> ( .1. .x. x ) = x ) |
11 |
|
isringd.h |
|- ( ( ph /\ x e. B ) -> ( x .x. .1. ) = x ) |
12 |
|
iscrngd.c |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( x .x. y ) = ( y .x. x ) ) |
13 |
1 2 3 4 5 6 7 8 9 10 11
|
isringd |
|- ( ph -> R e. Ring ) |
14 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
15 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
16 |
14 15
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
17 |
1 16
|
eqtrdi |
|- ( ph -> B = ( Base ` ( mulGrp ` R ) ) ) |
18 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
19 |
14 18
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
20 |
3 19
|
eqtrdi |
|- ( ph -> .x. = ( +g ` ( mulGrp ` R ) ) ) |
21 |
17 20 5 6 9 10 11
|
ismndd |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
22 |
17 20 21 12
|
iscmnd |
|- ( ph -> ( mulGrp ` R ) e. CMnd ) |
23 |
14
|
iscrng |
|- ( R e. CRing <-> ( R e. Ring /\ ( mulGrp ` R ) e. CMnd ) ) |
24 |
13 22 23
|
sylanbrc |
|- ( ph -> R e. CRing ) |