Metamath Proof Explorer


Theorem iscss

Description: The predicate "is a closed subspace" (of a pre-Hilbert space). (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cssval.o
|- ._|_ = ( ocv ` W )
cssval.c
|- C = ( ClSubSp ` W )
Assertion iscss
|- ( W e. X -> ( S e. C <-> S = ( ._|_ ` ( ._|_ ` S ) ) ) )

Proof

Step Hyp Ref Expression
1 cssval.o
 |-  ._|_ = ( ocv ` W )
2 cssval.c
 |-  C = ( ClSubSp ` W )
3 1 2 cssval
 |-  ( W e. X -> C = { s | s = ( ._|_ ` ( ._|_ ` s ) ) } )
4 3 eleq2d
 |-  ( W e. X -> ( S e. C <-> S e. { s | s = ( ._|_ ` ( ._|_ ` s ) ) } ) )
5 id
 |-  ( S = ( ._|_ ` ( ._|_ ` S ) ) -> S = ( ._|_ ` ( ._|_ ` S ) ) )
6 fvex
 |-  ( ._|_ ` ( ._|_ ` S ) ) e. _V
7 5 6 eqeltrdi
 |-  ( S = ( ._|_ ` ( ._|_ ` S ) ) -> S e. _V )
8 id
 |-  ( s = S -> s = S )
9 2fveq3
 |-  ( s = S -> ( ._|_ ` ( ._|_ ` s ) ) = ( ._|_ ` ( ._|_ ` S ) ) )
10 8 9 eqeq12d
 |-  ( s = S -> ( s = ( ._|_ ` ( ._|_ ` s ) ) <-> S = ( ._|_ ` ( ._|_ ` S ) ) ) )
11 7 10 elab3
 |-  ( S e. { s | s = ( ._|_ ` ( ._|_ ` s ) ) } <-> S = ( ._|_ ` ( ._|_ ` S ) ) )
12 4 11 bitrdi
 |-  ( W e. X -> ( S e. C <-> S = ( ._|_ ` ( ._|_ ` S ) ) ) )