Metamath Proof Explorer


Theorem iscss2

Description: It is sufficient to prove that the double orthocomplement is a subset of the target set to show that the set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cssss.v
|- V = ( Base ` W )
cssss.c
|- C = ( ClSubSp ` W )
ocvcss.o
|- ._|_ = ( ocv ` W )
Assertion iscss2
|- ( ( W e. PreHil /\ S C_ V ) -> ( S e. C <-> ( ._|_ ` ( ._|_ ` S ) ) C_ S ) )

Proof

Step Hyp Ref Expression
1 cssss.v
 |-  V = ( Base ` W )
2 cssss.c
 |-  C = ( ClSubSp ` W )
3 ocvcss.o
 |-  ._|_ = ( ocv ` W )
4 3 2 iscss
 |-  ( W e. PreHil -> ( S e. C <-> S = ( ._|_ ` ( ._|_ ` S ) ) ) )
5 4 adantr
 |-  ( ( W e. PreHil /\ S C_ V ) -> ( S e. C <-> S = ( ._|_ ` ( ._|_ ` S ) ) ) )
6 1 3 ocvocv
 |-  ( ( W e. PreHil /\ S C_ V ) -> S C_ ( ._|_ ` ( ._|_ ` S ) ) )
7 eqss
 |-  ( S = ( ._|_ ` ( ._|_ ` S ) ) <-> ( S C_ ( ._|_ ` ( ._|_ ` S ) ) /\ ( ._|_ ` ( ._|_ ` S ) ) C_ S ) )
8 7 baib
 |-  ( S C_ ( ._|_ ` ( ._|_ ` S ) ) -> ( S = ( ._|_ ` ( ._|_ ` S ) ) <-> ( ._|_ ` ( ._|_ ` S ) ) C_ S ) )
9 6 8 syl
 |-  ( ( W e. PreHil /\ S C_ V ) -> ( S = ( ._|_ ` ( ._|_ ` S ) ) <-> ( ._|_ ` ( ._|_ ` S ) ) C_ S ) )
10 5 9 bitrd
 |-  ( ( W e. PreHil /\ S C_ V ) -> ( S e. C <-> ( ._|_ ` ( ._|_ ` S ) ) C_ S ) )