Step |
Hyp |
Ref |
Expression |
1 |
|
iscusp2.1 |
|- B = ( Base ` W ) |
2 |
|
iscusp2.2 |
|- U = ( UnifSt ` W ) |
3 |
|
iscusp2.3 |
|- J = ( TopOpen ` W ) |
4 |
|
iscusp |
|- ( W e. CUnifSp <-> ( W e. UnifSp /\ A. c e. ( Fil ` ( Base ` W ) ) ( c e. ( CauFilU ` ( UnifSt ` W ) ) -> ( ( TopOpen ` W ) fLim c ) =/= (/) ) ) ) |
5 |
1
|
fveq2i |
|- ( Fil ` B ) = ( Fil ` ( Base ` W ) ) |
6 |
2
|
fveq2i |
|- ( CauFilU ` U ) = ( CauFilU ` ( UnifSt ` W ) ) |
7 |
6
|
eleq2i |
|- ( c e. ( CauFilU ` U ) <-> c e. ( CauFilU ` ( UnifSt ` W ) ) ) |
8 |
3
|
oveq1i |
|- ( J fLim c ) = ( ( TopOpen ` W ) fLim c ) |
9 |
8
|
neeq1i |
|- ( ( J fLim c ) =/= (/) <-> ( ( TopOpen ` W ) fLim c ) =/= (/) ) |
10 |
7 9
|
imbi12i |
|- ( ( c e. ( CauFilU ` U ) -> ( J fLim c ) =/= (/) ) <-> ( c e. ( CauFilU ` ( UnifSt ` W ) ) -> ( ( TopOpen ` W ) fLim c ) =/= (/) ) ) |
11 |
5 10
|
raleqbii |
|- ( A. c e. ( Fil ` B ) ( c e. ( CauFilU ` U ) -> ( J fLim c ) =/= (/) ) <-> A. c e. ( Fil ` ( Base ` W ) ) ( c e. ( CauFilU ` ( UnifSt ` W ) ) -> ( ( TopOpen ` W ) fLim c ) =/= (/) ) ) |
12 |
11
|
anbi2i |
|- ( ( W e. UnifSp /\ A. c e. ( Fil ` B ) ( c e. ( CauFilU ` U ) -> ( J fLim c ) =/= (/) ) ) <-> ( W e. UnifSp /\ A. c e. ( Fil ` ( Base ` W ) ) ( c e. ( CauFilU ` ( UnifSt ` W ) ) -> ( ( TopOpen ` W ) fLim c ) =/= (/) ) ) ) |
13 |
4 12
|
bitr4i |
|- ( W e. CUnifSp <-> ( W e. UnifSp /\ A. c e. ( Fil ` B ) ( c e. ( CauFilU ` U ) -> ( J fLim c ) =/= (/) ) ) ) |