Step |
Hyp |
Ref |
Expression |
1 |
|
iscvlat.b |
|- B = ( Base ` K ) |
2 |
|
iscvlat.l |
|- .<_ = ( le ` K ) |
3 |
|
iscvlat.j |
|- .\/ = ( join ` K ) |
4 |
|
iscvlat.a |
|- A = ( Atoms ` K ) |
5 |
|
fveq2 |
|- ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) |
6 |
5 4
|
eqtr4di |
|- ( k = K -> ( Atoms ` k ) = A ) |
7 |
|
fveq2 |
|- ( k = K -> ( Base ` k ) = ( Base ` K ) ) |
8 |
7 1
|
eqtr4di |
|- ( k = K -> ( Base ` k ) = B ) |
9 |
|
fveq2 |
|- ( k = K -> ( le ` k ) = ( le ` K ) ) |
10 |
9 2
|
eqtr4di |
|- ( k = K -> ( le ` k ) = .<_ ) |
11 |
10
|
breqd |
|- ( k = K -> ( p ( le ` k ) x <-> p .<_ x ) ) |
12 |
11
|
notbid |
|- ( k = K -> ( -. p ( le ` k ) x <-> -. p .<_ x ) ) |
13 |
|
eqidd |
|- ( k = K -> p = p ) |
14 |
|
fveq2 |
|- ( k = K -> ( join ` k ) = ( join ` K ) ) |
15 |
14 3
|
eqtr4di |
|- ( k = K -> ( join ` k ) = .\/ ) |
16 |
15
|
oveqd |
|- ( k = K -> ( x ( join ` k ) q ) = ( x .\/ q ) ) |
17 |
13 10 16
|
breq123d |
|- ( k = K -> ( p ( le ` k ) ( x ( join ` k ) q ) <-> p .<_ ( x .\/ q ) ) ) |
18 |
12 17
|
anbi12d |
|- ( k = K -> ( ( -. p ( le ` k ) x /\ p ( le ` k ) ( x ( join ` k ) q ) ) <-> ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) ) ) |
19 |
|
eqidd |
|- ( k = K -> q = q ) |
20 |
15
|
oveqd |
|- ( k = K -> ( x ( join ` k ) p ) = ( x .\/ p ) ) |
21 |
19 10 20
|
breq123d |
|- ( k = K -> ( q ( le ` k ) ( x ( join ` k ) p ) <-> q .<_ ( x .\/ p ) ) ) |
22 |
18 21
|
imbi12d |
|- ( k = K -> ( ( ( -. p ( le ` k ) x /\ p ( le ` k ) ( x ( join ` k ) q ) ) -> q ( le ` k ) ( x ( join ` k ) p ) ) <-> ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |
23 |
8 22
|
raleqbidv |
|- ( k = K -> ( A. x e. ( Base ` k ) ( ( -. p ( le ` k ) x /\ p ( le ` k ) ( x ( join ` k ) q ) ) -> q ( le ` k ) ( x ( join ` k ) p ) ) <-> A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |
24 |
6 23
|
raleqbidv |
|- ( k = K -> ( A. q e. ( Atoms ` k ) A. x e. ( Base ` k ) ( ( -. p ( le ` k ) x /\ p ( le ` k ) ( x ( join ` k ) q ) ) -> q ( le ` k ) ( x ( join ` k ) p ) ) <-> A. q e. A A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |
25 |
6 24
|
raleqbidv |
|- ( k = K -> ( A. p e. ( Atoms ` k ) A. q e. ( Atoms ` k ) A. x e. ( Base ` k ) ( ( -. p ( le ` k ) x /\ p ( le ` k ) ( x ( join ` k ) q ) ) -> q ( le ` k ) ( x ( join ` k ) p ) ) <-> A. p e. A A. q e. A A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |
26 |
|
df-cvlat |
|- CvLat = { k e. AtLat | A. p e. ( Atoms ` k ) A. q e. ( Atoms ` k ) A. x e. ( Base ` k ) ( ( -. p ( le ` k ) x /\ p ( le ` k ) ( x ( join ` k ) q ) ) -> q ( le ` k ) ( x ( join ` k ) p ) ) } |
27 |
25 26
|
elrab2 |
|- ( K e. CvLat <-> ( K e. AtLat /\ A. p e. A A. q e. A A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |