| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscvlat.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | iscvlat.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | iscvlat.j |  |-  .\/ = ( join ` K ) | 
						
							| 4 |  | iscvlat.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | fveq2 |  |-  ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) | 
						
							| 6 | 5 4 | eqtr4di |  |-  ( k = K -> ( Atoms ` k ) = A ) | 
						
							| 7 |  | fveq2 |  |-  ( k = K -> ( Base ` k ) = ( Base ` K ) ) | 
						
							| 8 | 7 1 | eqtr4di |  |-  ( k = K -> ( Base ` k ) = B ) | 
						
							| 9 |  | fveq2 |  |-  ( k = K -> ( le ` k ) = ( le ` K ) ) | 
						
							| 10 | 9 2 | eqtr4di |  |-  ( k = K -> ( le ` k ) = .<_ ) | 
						
							| 11 | 10 | breqd |  |-  ( k = K -> ( p ( le ` k ) x <-> p .<_ x ) ) | 
						
							| 12 | 11 | notbid |  |-  ( k = K -> ( -. p ( le ` k ) x <-> -. p .<_ x ) ) | 
						
							| 13 |  | eqidd |  |-  ( k = K -> p = p ) | 
						
							| 14 |  | fveq2 |  |-  ( k = K -> ( join ` k ) = ( join ` K ) ) | 
						
							| 15 | 14 3 | eqtr4di |  |-  ( k = K -> ( join ` k ) = .\/ ) | 
						
							| 16 | 15 | oveqd |  |-  ( k = K -> ( x ( join ` k ) q ) = ( x .\/ q ) ) | 
						
							| 17 | 13 10 16 | breq123d |  |-  ( k = K -> ( p ( le ` k ) ( x ( join ` k ) q ) <-> p .<_ ( x .\/ q ) ) ) | 
						
							| 18 | 12 17 | anbi12d |  |-  ( k = K -> ( ( -. p ( le ` k ) x /\ p ( le ` k ) ( x ( join ` k ) q ) ) <-> ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) ) ) | 
						
							| 19 |  | eqidd |  |-  ( k = K -> q = q ) | 
						
							| 20 | 15 | oveqd |  |-  ( k = K -> ( x ( join ` k ) p ) = ( x .\/ p ) ) | 
						
							| 21 | 19 10 20 | breq123d |  |-  ( k = K -> ( q ( le ` k ) ( x ( join ` k ) p ) <-> q .<_ ( x .\/ p ) ) ) | 
						
							| 22 | 18 21 | imbi12d |  |-  ( k = K -> ( ( ( -. p ( le ` k ) x /\ p ( le ` k ) ( x ( join ` k ) q ) ) -> q ( le ` k ) ( x ( join ` k ) p ) ) <-> ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) | 
						
							| 23 | 8 22 | raleqbidv |  |-  ( k = K -> ( A. x e. ( Base ` k ) ( ( -. p ( le ` k ) x /\ p ( le ` k ) ( x ( join ` k ) q ) ) -> q ( le ` k ) ( x ( join ` k ) p ) ) <-> A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) | 
						
							| 24 | 6 23 | raleqbidv |  |-  ( k = K -> ( A. q e. ( Atoms ` k ) A. x e. ( Base ` k ) ( ( -. p ( le ` k ) x /\ p ( le ` k ) ( x ( join ` k ) q ) ) -> q ( le ` k ) ( x ( join ` k ) p ) ) <-> A. q e. A A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) | 
						
							| 25 | 6 24 | raleqbidv |  |-  ( k = K -> ( A. p e. ( Atoms ` k ) A. q e. ( Atoms ` k ) A. x e. ( Base ` k ) ( ( -. p ( le ` k ) x /\ p ( le ` k ) ( x ( join ` k ) q ) ) -> q ( le ` k ) ( x ( join ` k ) p ) ) <-> A. p e. A A. q e. A A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) | 
						
							| 26 |  | df-cvlat |  |-  CvLat = { k e. AtLat | A. p e. ( Atoms ` k ) A. q e. ( Atoms ` k ) A. x e. ( Base ` k ) ( ( -. p ( le ` k ) x /\ p ( le ` k ) ( x ( join ` k ) q ) ) -> q ( le ` k ) ( x ( join ` k ) p ) ) } | 
						
							| 27 | 25 26 | elrab2 |  |-  ( K e. CvLat <-> ( K e. AtLat /\ A. p e. A A. q e. A A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |