Step |
Hyp |
Ref |
Expression |
1 |
|
iscvsp.t |
|- .x. = ( .s ` W ) |
2 |
|
iscvsp.a |
|- .+ = ( +g ` W ) |
3 |
|
iscvsp.v |
|- V = ( Base ` W ) |
4 |
|
iscvsp.s |
|- S = ( Scalar ` W ) |
5 |
|
iscvsp.k |
|- K = ( Base ` S ) |
6 |
|
iscvs |
|- ( W e. CVec <-> ( W e. CMod /\ ( Scalar ` W ) e. DivRing ) ) |
7 |
1 2 3 4 5
|
isclmp |
|- ( W e. CMod <-> ( ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) |
8 |
7
|
anbi2ci |
|- ( ( W e. CMod /\ ( Scalar ` W ) e. DivRing ) <-> ( ( Scalar ` W ) e. DivRing /\ ( ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) ) |
9 |
|
anass |
|- ( ( ( ( Scalar ` W ) e. DivRing /\ ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) <-> ( ( Scalar ` W ) e. DivRing /\ ( ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) ) |
10 |
|
3anan12 |
|- ( ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) <-> ( S = ( CCfld |`s K ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) ) |
11 |
10
|
anbi2i |
|- ( ( ( Scalar ` W ) e. DivRing /\ ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) <-> ( ( Scalar ` W ) e. DivRing /\ ( S = ( CCfld |`s K ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) ) ) |
12 |
|
anass |
|- ( ( ( ( Scalar ` W ) e. DivRing /\ S = ( CCfld |`s K ) ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) <-> ( ( Scalar ` W ) e. DivRing /\ ( S = ( CCfld |`s K ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) ) ) |
13 |
4
|
eqcomi |
|- ( Scalar ` W ) = S |
14 |
13
|
eleq1i |
|- ( ( Scalar ` W ) e. DivRing <-> S e. DivRing ) |
15 |
14
|
anbi1i |
|- ( ( ( Scalar ` W ) e. DivRing /\ S = ( CCfld |`s K ) ) <-> ( S e. DivRing /\ S = ( CCfld |`s K ) ) ) |
16 |
15
|
anbi1i |
|- ( ( ( ( Scalar ` W ) e. DivRing /\ S = ( CCfld |`s K ) ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) <-> ( ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) ) |
17 |
11 12 16
|
3bitr2i |
|- ( ( ( Scalar ` W ) e. DivRing /\ ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) <-> ( ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) ) |
18 |
|
3anan12 |
|- ( ( W e. Grp /\ ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ K e. ( SubRing ` CCfld ) ) <-> ( ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) ) |
19 |
17 18
|
bitr4i |
|- ( ( ( Scalar ` W ) e. DivRing /\ ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) <-> ( W e. Grp /\ ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ K e. ( SubRing ` CCfld ) ) ) |
20 |
19
|
anbi1i |
|- ( ( ( ( Scalar ` W ) e. DivRing /\ ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) <-> ( ( W e. Grp /\ ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) |
21 |
8 9 20
|
3bitr2i |
|- ( ( W e. CMod /\ ( Scalar ` W ) e. DivRing ) <-> ( ( W e. Grp /\ ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) |
22 |
6 21
|
bitri |
|- ( W e. CVec <-> ( ( W e. Grp /\ ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) |