| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscyg.1 |
|- B = ( Base ` G ) |
| 2 |
|
iscyg.2 |
|- .x. = ( .g ` G ) |
| 3 |
|
fveq2 |
|- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
| 4 |
3 1
|
eqtr4di |
|- ( g = G -> ( Base ` g ) = B ) |
| 5 |
|
fveq2 |
|- ( g = G -> ( .g ` g ) = ( .g ` G ) ) |
| 6 |
5 2
|
eqtr4di |
|- ( g = G -> ( .g ` g ) = .x. ) |
| 7 |
6
|
oveqd |
|- ( g = G -> ( n ( .g ` g ) x ) = ( n .x. x ) ) |
| 8 |
7
|
mpteq2dv |
|- ( g = G -> ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( n e. ZZ |-> ( n .x. x ) ) ) |
| 9 |
8
|
rneqd |
|- ( g = G -> ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ran ( n e. ZZ |-> ( n .x. x ) ) ) |
| 10 |
9 4
|
eqeq12d |
|- ( g = G -> ( ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g ) <-> ran ( n e. ZZ |-> ( n .x. x ) ) = B ) ) |
| 11 |
4 10
|
rexeqbidv |
|- ( g = G -> ( E. x e. ( Base ` g ) ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g ) <-> E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = B ) ) |
| 12 |
|
df-cyg |
|- CycGrp = { g e. Grp | E. x e. ( Base ` g ) ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g ) } |
| 13 |
11 12
|
elrab2 |
|- ( G e. CycGrp <-> ( G e. Grp /\ E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = B ) ) |