| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscyg.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | iscyg.2 |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | iscyg3.e |  |-  E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } | 
						
							| 4 | 1 2 | iscyg |  |-  ( G e. CycGrp <-> ( G e. Grp /\ E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = B ) ) | 
						
							| 5 | 3 | neeq1i |  |-  ( E =/= (/) <-> { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } =/= (/) ) | 
						
							| 6 |  | rabn0 |  |-  ( { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } =/= (/) <-> E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = B ) | 
						
							| 7 | 5 6 | bitri |  |-  ( E =/= (/) <-> E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = B ) | 
						
							| 8 | 7 | anbi2i |  |-  ( ( G e. Grp /\ E =/= (/) ) <-> ( G e. Grp /\ E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = B ) ) | 
						
							| 9 | 4 8 | bitr4i |  |-  ( G e. CycGrp <-> ( G e. Grp /\ E =/= (/) ) ) |