Step |
Hyp |
Ref |
Expression |
1 |
|
iscyg.1 |
|- B = ( Base ` G ) |
2 |
|
iscyg.2 |
|- .x. = ( .g ` G ) |
3 |
|
iscyg3.e |
|- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
4 |
1 2
|
iscyg |
|- ( G e. CycGrp <-> ( G e. Grp /\ E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = B ) ) |
5 |
3
|
neeq1i |
|- ( E =/= (/) <-> { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } =/= (/) ) |
6 |
|
rabn0 |
|- ( { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } =/= (/) <-> E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = B ) |
7 |
5 6
|
bitri |
|- ( E =/= (/) <-> E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = B ) |
8 |
7
|
anbi2i |
|- ( ( G e. Grp /\ E =/= (/) ) <-> ( G e. Grp /\ E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = B ) ) |
9 |
4 8
|
bitr4i |
|- ( G e. CycGrp <-> ( G e. Grp /\ E =/= (/) ) ) |