Step |
Hyp |
Ref |
Expression |
1 |
|
iscyg.1 |
|- B = ( Base ` G ) |
2 |
|
iscyg.2 |
|- .x. = ( .g ` G ) |
3 |
|
iscygd.3 |
|- ( ph -> G e. Grp ) |
4 |
|
iscygd.4 |
|- ( ph -> X e. B ) |
5 |
|
iscygd.5 |
|- ( ( ph /\ y e. B ) -> E. n e. ZZ y = ( n .x. X ) ) |
6 |
5
|
ralrimiva |
|- ( ph -> A. y e. B E. n e. ZZ y = ( n .x. X ) ) |
7 |
|
eqid |
|- { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
8 |
1 2 7
|
iscyggen2 |
|- ( G e. Grp -> ( X e. { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } <-> ( X e. B /\ A. y e. B E. n e. ZZ y = ( n .x. X ) ) ) ) |
9 |
3 8
|
syl |
|- ( ph -> ( X e. { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } <-> ( X e. B /\ A. y e. B E. n e. ZZ y = ( n .x. X ) ) ) ) |
10 |
4 6 9
|
mpbir2and |
|- ( ph -> X e. { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } ) |
11 |
10
|
ne0d |
|- ( ph -> { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } =/= (/) ) |
12 |
1 2 7
|
iscyg2 |
|- ( G e. CycGrp <-> ( G e. Grp /\ { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } =/= (/) ) ) |
13 |
3 11 12
|
sylanbrc |
|- ( ph -> G e. CycGrp ) |