| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscyg.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | iscyg.2 |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | iscygd.3 |  |-  ( ph -> G e. Grp ) | 
						
							| 4 |  | iscygd.4 |  |-  ( ph -> X e. B ) | 
						
							| 5 |  | iscygd.5 |  |-  ( ( ph /\ y e. B ) -> E. n e. ZZ y = ( n .x. X ) ) | 
						
							| 6 | 5 | ralrimiva |  |-  ( ph -> A. y e. B E. n e. ZZ y = ( n .x. X ) ) | 
						
							| 7 |  | eqid |  |-  { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } | 
						
							| 8 | 1 2 7 | iscyggen2 |  |-  ( G e. Grp -> ( X e. { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } <-> ( X e. B /\ A. y e. B E. n e. ZZ y = ( n .x. X ) ) ) ) | 
						
							| 9 | 3 8 | syl |  |-  ( ph -> ( X e. { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } <-> ( X e. B /\ A. y e. B E. n e. ZZ y = ( n .x. X ) ) ) ) | 
						
							| 10 | 4 6 9 | mpbir2and |  |-  ( ph -> X e. { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } ) | 
						
							| 11 | 10 | ne0d |  |-  ( ph -> { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } =/= (/) ) | 
						
							| 12 | 1 2 7 | iscyg2 |  |-  ( G e. CycGrp <-> ( G e. Grp /\ { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } =/= (/) ) ) | 
						
							| 13 | 3 11 12 | sylanbrc |  |-  ( ph -> G e. CycGrp ) |