Step |
Hyp |
Ref |
Expression |
1 |
|
iscyg.1 |
|- B = ( Base ` G ) |
2 |
|
iscyg.2 |
|- .x. = ( .g ` G ) |
3 |
|
iscyg3.e |
|- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
4 |
|
simpl |
|- ( ( x = X /\ n e. ZZ ) -> x = X ) |
5 |
4
|
oveq2d |
|- ( ( x = X /\ n e. ZZ ) -> ( n .x. x ) = ( n .x. X ) ) |
6 |
5
|
mpteq2dva |
|- ( x = X -> ( n e. ZZ |-> ( n .x. x ) ) = ( n e. ZZ |-> ( n .x. X ) ) ) |
7 |
6
|
rneqd |
|- ( x = X -> ran ( n e. ZZ |-> ( n .x. x ) ) = ran ( n e. ZZ |-> ( n .x. X ) ) ) |
8 |
7
|
eqeq1d |
|- ( x = X -> ( ran ( n e. ZZ |-> ( n .x. x ) ) = B <-> ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) |
9 |
8 3
|
elrab2 |
|- ( X e. E <-> ( X e. B /\ ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) |