| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscygodd.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | iscygodd.o |  |-  O = ( od ` G ) | 
						
							| 3 |  | iscygodd.3 |  |-  ( ph -> G e. Grp ) | 
						
							| 4 |  | iscygodd.4 |  |-  ( ph -> X e. B ) | 
						
							| 5 |  | iscygodd.5 |  |-  ( ph -> ( O ` X ) = ( # ` B ) ) | 
						
							| 6 | 1 2 | odcl |  |-  ( X e. B -> ( O ` X ) e. NN0 ) | 
						
							| 7 | 4 6 | syl |  |-  ( ph -> ( O ` X ) e. NN0 ) | 
						
							| 8 | 5 7 | eqeltrrd |  |-  ( ph -> ( # ` B ) e. NN0 ) | 
						
							| 9 | 1 | fvexi |  |-  B e. _V | 
						
							| 10 |  | hashclb |  |-  ( B e. _V -> ( B e. Fin <-> ( # ` B ) e. NN0 ) ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ( B e. Fin <-> ( # ` B ) e. NN0 ) | 
						
							| 12 | 8 11 | sylibr |  |-  ( ph -> B e. Fin ) | 
						
							| 13 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 14 |  | eqid |  |-  { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } = { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } | 
						
							| 15 | 1 13 14 2 | cyggenod |  |-  ( ( G e. Grp /\ B e. Fin ) -> ( X e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } <-> ( X e. B /\ ( O ` X ) = ( # ` B ) ) ) ) | 
						
							| 16 | 3 12 15 | syl2anc |  |-  ( ph -> ( X e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } <-> ( X e. B /\ ( O ` X ) = ( # ` B ) ) ) ) | 
						
							| 17 | 4 5 16 | mpbir2and |  |-  ( ph -> X e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) | 
						
							| 18 | 17 | ne0d |  |-  ( ph -> { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } =/= (/) ) | 
						
							| 19 | 1 13 14 | iscyg2 |  |-  ( G e. CycGrp <-> ( G e. Grp /\ { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } =/= (/) ) ) | 
						
							| 20 | 3 18 19 | sylanbrc |  |-  ( ph -> G e. CycGrp ) |