Step |
Hyp |
Ref |
Expression |
1 |
|
iscygodd.1 |
|- B = ( Base ` G ) |
2 |
|
iscygodd.o |
|- O = ( od ` G ) |
3 |
|
iscygodd.3 |
|- ( ph -> G e. Grp ) |
4 |
|
iscygodd.4 |
|- ( ph -> X e. B ) |
5 |
|
iscygodd.5 |
|- ( ph -> ( O ` X ) = ( # ` B ) ) |
6 |
1 2
|
odcl |
|- ( X e. B -> ( O ` X ) e. NN0 ) |
7 |
4 6
|
syl |
|- ( ph -> ( O ` X ) e. NN0 ) |
8 |
5 7
|
eqeltrrd |
|- ( ph -> ( # ` B ) e. NN0 ) |
9 |
1
|
fvexi |
|- B e. _V |
10 |
|
hashclb |
|- ( B e. _V -> ( B e. Fin <-> ( # ` B ) e. NN0 ) ) |
11 |
9 10
|
ax-mp |
|- ( B e. Fin <-> ( # ` B ) e. NN0 ) |
12 |
8 11
|
sylibr |
|- ( ph -> B e. Fin ) |
13 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
14 |
|
eqid |
|- { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } = { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } |
15 |
1 13 14 2
|
cyggenod |
|- ( ( G e. Grp /\ B e. Fin ) -> ( X e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } <-> ( X e. B /\ ( O ` X ) = ( # ` B ) ) ) ) |
16 |
3 12 15
|
syl2anc |
|- ( ph -> ( X e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } <-> ( X e. B /\ ( O ` X ) = ( # ` B ) ) ) ) |
17 |
4 5 16
|
mpbir2and |
|- ( ph -> X e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) |
18 |
17
|
ne0d |
|- ( ph -> { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } =/= (/) ) |
19 |
1 13 14
|
iscyg2 |
|- ( G e. CycGrp <-> ( G e. Grp /\ { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } =/= (/) ) ) |
20 |
3 18 19
|
sylanbrc |
|- ( ph -> G e. CycGrp ) |