| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-br |
|- ( G DivRingOps H <-> <. G , H >. e. DivRingOps ) |
| 2 |
|
df-drngo |
|- DivRingOps = { <. x , y >. | ( <. x , y >. e. RingOps /\ ( y |` ( ( ran x \ { ( GId ` x ) } ) X. ( ran x \ { ( GId ` x ) } ) ) ) e. GrpOp ) } |
| 3 |
2
|
relopabiv |
|- Rel DivRingOps |
| 4 |
3
|
brrelex1i |
|- ( G DivRingOps H -> G e. _V ) |
| 5 |
1 4
|
sylbir |
|- ( <. G , H >. e. DivRingOps -> G e. _V ) |
| 6 |
5
|
anim1i |
|- ( ( <. G , H >. e. DivRingOps /\ H e. A ) -> ( G e. _V /\ H e. A ) ) |
| 7 |
6
|
ancoms |
|- ( ( H e. A /\ <. G , H >. e. DivRingOps ) -> ( G e. _V /\ H e. A ) ) |
| 8 |
|
rngoablo2 |
|- ( <. G , H >. e. RingOps -> G e. AbelOp ) |
| 9 |
|
elex |
|- ( G e. AbelOp -> G e. _V ) |
| 10 |
8 9
|
syl |
|- ( <. G , H >. e. RingOps -> G e. _V ) |
| 11 |
10
|
ad2antrl |
|- ( ( H e. A /\ ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) -> G e. _V ) |
| 12 |
|
simpl |
|- ( ( H e. A /\ ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) -> H e. A ) |
| 13 |
11 12
|
jca |
|- ( ( H e. A /\ ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) -> ( G e. _V /\ H e. A ) ) |
| 14 |
|
df-drngo |
|- DivRingOps = { <. g , h >. | ( <. g , h >. e. RingOps /\ ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp ) } |
| 15 |
14
|
eleq2i |
|- ( <. G , H >. e. DivRingOps <-> <. G , H >. e. { <. g , h >. | ( <. g , h >. e. RingOps /\ ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp ) } ) |
| 16 |
|
opeq1 |
|- ( g = G -> <. g , h >. = <. G , h >. ) |
| 17 |
16
|
eleq1d |
|- ( g = G -> ( <. g , h >. e. RingOps <-> <. G , h >. e. RingOps ) ) |
| 18 |
|
rneq |
|- ( g = G -> ran g = ran G ) |
| 19 |
|
fveq2 |
|- ( g = G -> ( GId ` g ) = ( GId ` G ) ) |
| 20 |
19
|
sneqd |
|- ( g = G -> { ( GId ` g ) } = { ( GId ` G ) } ) |
| 21 |
18 20
|
difeq12d |
|- ( g = G -> ( ran g \ { ( GId ` g ) } ) = ( ran G \ { ( GId ` G ) } ) ) |
| 22 |
21
|
sqxpeqd |
|- ( g = G -> ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) = ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) |
| 23 |
22
|
reseq2d |
|- ( g = G -> ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) = ( h |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) ) |
| 24 |
23
|
eleq1d |
|- ( g = G -> ( ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp <-> ( h |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) |
| 25 |
17 24
|
anbi12d |
|- ( g = G -> ( ( <. g , h >. e. RingOps /\ ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp ) <-> ( <. G , h >. e. RingOps /\ ( h |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) ) |
| 26 |
|
opeq2 |
|- ( h = H -> <. G , h >. = <. G , H >. ) |
| 27 |
26
|
eleq1d |
|- ( h = H -> ( <. G , h >. e. RingOps <-> <. G , H >. e. RingOps ) ) |
| 28 |
|
reseq1 |
|- ( h = H -> ( h |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) = ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) ) |
| 29 |
28
|
eleq1d |
|- ( h = H -> ( ( h |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp <-> ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) |
| 30 |
27 29
|
anbi12d |
|- ( h = H -> ( ( <. G , h >. e. RingOps /\ ( h |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) ) |
| 31 |
25 30
|
opelopabg |
|- ( ( G e. _V /\ H e. A ) -> ( <. G , H >. e. { <. g , h >. | ( <. g , h >. e. RingOps /\ ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp ) } <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) ) |
| 32 |
15 31
|
bitrid |
|- ( ( G e. _V /\ H e. A ) -> ( <. G , H >. e. DivRingOps <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) ) |
| 33 |
7 13 32
|
pm5.21nd |
|- ( H e. A -> ( <. G , H >. e. DivRingOps <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) ) |