Step |
Hyp |
Ref |
Expression |
1 |
|
df-br |
|- ( G DivRingOps H <-> <. G , H >. e. DivRingOps ) |
2 |
|
df-drngo |
|- DivRingOps = { <. x , y >. | ( <. x , y >. e. RingOps /\ ( y |` ( ( ran x \ { ( GId ` x ) } ) X. ( ran x \ { ( GId ` x ) } ) ) ) e. GrpOp ) } |
3 |
2
|
relopabiv |
|- Rel DivRingOps |
4 |
3
|
brrelex1i |
|- ( G DivRingOps H -> G e. _V ) |
5 |
1 4
|
sylbir |
|- ( <. G , H >. e. DivRingOps -> G e. _V ) |
6 |
5
|
anim1i |
|- ( ( <. G , H >. e. DivRingOps /\ H e. A ) -> ( G e. _V /\ H e. A ) ) |
7 |
6
|
ancoms |
|- ( ( H e. A /\ <. G , H >. e. DivRingOps ) -> ( G e. _V /\ H e. A ) ) |
8 |
|
rngoablo2 |
|- ( <. G , H >. e. RingOps -> G e. AbelOp ) |
9 |
|
elex |
|- ( G e. AbelOp -> G e. _V ) |
10 |
8 9
|
syl |
|- ( <. G , H >. e. RingOps -> G e. _V ) |
11 |
10
|
ad2antrl |
|- ( ( H e. A /\ ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) -> G e. _V ) |
12 |
|
simpl |
|- ( ( H e. A /\ ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) -> H e. A ) |
13 |
11 12
|
jca |
|- ( ( H e. A /\ ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) -> ( G e. _V /\ H e. A ) ) |
14 |
|
df-drngo |
|- DivRingOps = { <. g , h >. | ( <. g , h >. e. RingOps /\ ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp ) } |
15 |
14
|
eleq2i |
|- ( <. G , H >. e. DivRingOps <-> <. G , H >. e. { <. g , h >. | ( <. g , h >. e. RingOps /\ ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp ) } ) |
16 |
|
opeq1 |
|- ( g = G -> <. g , h >. = <. G , h >. ) |
17 |
16
|
eleq1d |
|- ( g = G -> ( <. g , h >. e. RingOps <-> <. G , h >. e. RingOps ) ) |
18 |
|
rneq |
|- ( g = G -> ran g = ran G ) |
19 |
|
fveq2 |
|- ( g = G -> ( GId ` g ) = ( GId ` G ) ) |
20 |
19
|
sneqd |
|- ( g = G -> { ( GId ` g ) } = { ( GId ` G ) } ) |
21 |
18 20
|
difeq12d |
|- ( g = G -> ( ran g \ { ( GId ` g ) } ) = ( ran G \ { ( GId ` G ) } ) ) |
22 |
21
|
sqxpeqd |
|- ( g = G -> ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) = ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) |
23 |
22
|
reseq2d |
|- ( g = G -> ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) = ( h |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) ) |
24 |
23
|
eleq1d |
|- ( g = G -> ( ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp <-> ( h |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) |
25 |
17 24
|
anbi12d |
|- ( g = G -> ( ( <. g , h >. e. RingOps /\ ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp ) <-> ( <. G , h >. e. RingOps /\ ( h |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) ) |
26 |
|
opeq2 |
|- ( h = H -> <. G , h >. = <. G , H >. ) |
27 |
26
|
eleq1d |
|- ( h = H -> ( <. G , h >. e. RingOps <-> <. G , H >. e. RingOps ) ) |
28 |
|
reseq1 |
|- ( h = H -> ( h |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) = ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) ) |
29 |
28
|
eleq1d |
|- ( h = H -> ( ( h |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp <-> ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) |
30 |
27 29
|
anbi12d |
|- ( h = H -> ( ( <. G , h >. e. RingOps /\ ( h |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) ) |
31 |
25 30
|
opelopabg |
|- ( ( G e. _V /\ H e. A ) -> ( <. G , H >. e. { <. g , h >. | ( <. g , h >. e. RingOps /\ ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp ) } <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) ) |
32 |
15 31
|
syl5bb |
|- ( ( G e. _V /\ H e. A ) -> ( <. G , H >. e. DivRingOps <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) ) |
33 |
7 13 32
|
pm5.21nd |
|- ( H e. A -> ( <. G , H >. e. DivRingOps <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) ) |