Step |
Hyp |
Ref |
Expression |
1 |
|
isdomn.b |
|- B = ( Base ` R ) |
2 |
|
isdomn.t |
|- .x. = ( .r ` R ) |
3 |
|
isdomn.z |
|- .0. = ( 0g ` R ) |
4 |
|
fvexd |
|- ( r = R -> ( Base ` r ) e. _V ) |
5 |
|
fveq2 |
|- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
6 |
5 1
|
eqtr4di |
|- ( r = R -> ( Base ` r ) = B ) |
7 |
|
fvexd |
|- ( ( r = R /\ b = B ) -> ( 0g ` r ) e. _V ) |
8 |
|
fveq2 |
|- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
9 |
8
|
adantr |
|- ( ( r = R /\ b = B ) -> ( 0g ` r ) = ( 0g ` R ) ) |
10 |
9 3
|
eqtr4di |
|- ( ( r = R /\ b = B ) -> ( 0g ` r ) = .0. ) |
11 |
|
simplr |
|- ( ( ( r = R /\ b = B ) /\ z = .0. ) -> b = B ) |
12 |
|
fveq2 |
|- ( r = R -> ( .r ` r ) = ( .r ` R ) ) |
13 |
12 2
|
eqtr4di |
|- ( r = R -> ( .r ` r ) = .x. ) |
14 |
13
|
oveqdr |
|- ( ( r = R /\ b = B ) -> ( x ( .r ` r ) y ) = ( x .x. y ) ) |
15 |
|
id |
|- ( z = .0. -> z = .0. ) |
16 |
14 15
|
eqeqan12d |
|- ( ( ( r = R /\ b = B ) /\ z = .0. ) -> ( ( x ( .r ` r ) y ) = z <-> ( x .x. y ) = .0. ) ) |
17 |
|
eqeq2 |
|- ( z = .0. -> ( x = z <-> x = .0. ) ) |
18 |
|
eqeq2 |
|- ( z = .0. -> ( y = z <-> y = .0. ) ) |
19 |
17 18
|
orbi12d |
|- ( z = .0. -> ( ( x = z \/ y = z ) <-> ( x = .0. \/ y = .0. ) ) ) |
20 |
19
|
adantl |
|- ( ( ( r = R /\ b = B ) /\ z = .0. ) -> ( ( x = z \/ y = z ) <-> ( x = .0. \/ y = .0. ) ) ) |
21 |
16 20
|
imbi12d |
|- ( ( ( r = R /\ b = B ) /\ z = .0. ) -> ( ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) <-> ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
22 |
11 21
|
raleqbidv |
|- ( ( ( r = R /\ b = B ) /\ z = .0. ) -> ( A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) <-> A. y e. B ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
23 |
11 22
|
raleqbidv |
|- ( ( ( r = R /\ b = B ) /\ z = .0. ) -> ( A. x e. b A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) <-> A. x e. B A. y e. B ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
24 |
7 10 23
|
sbcied2 |
|- ( ( r = R /\ b = B ) -> ( [. ( 0g ` r ) / z ]. A. x e. b A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) <-> A. x e. B A. y e. B ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
25 |
4 6 24
|
sbcied2 |
|- ( r = R -> ( [. ( Base ` r ) / b ]. [. ( 0g ` r ) / z ]. A. x e. b A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) <-> A. x e. B A. y e. B ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
26 |
|
df-domn |
|- Domn = { r e. NzRing | [. ( Base ` r ) / b ]. [. ( 0g ` r ) / z ]. A. x e. b A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) } |
27 |
25 26
|
elrab2 |
|- ( R e. Domn <-> ( R e. NzRing /\ A. x e. B A. y e. B ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |