| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isdomn2.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | isdomn2.t |  |-  E = ( RLReg ` R ) | 
						
							| 3 |  | isdomn2.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 5 | 1 4 3 | isdomn |  |-  ( R e. Domn <-> ( R e. NzRing /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) | 
						
							| 6 |  | eldifi |  |-  ( x e. ( B \ { .0. } ) -> x e. B ) | 
						
							| 7 | 2 1 4 3 | isrrg |  |-  ( x e. E <-> ( x e. B /\ A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) | 
						
							| 8 | 7 | baib |  |-  ( x e. B -> ( x e. E <-> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) | 
						
							| 9 | 6 8 | syl |  |-  ( x e. ( B \ { .0. } ) -> ( x e. E <-> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) | 
						
							| 10 | 9 | ralbiia |  |-  ( A. x e. ( B \ { .0. } ) x e. E <-> A. x e. ( B \ { .0. } ) A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) | 
						
							| 11 |  | dfss3 |  |-  ( ( B \ { .0. } ) C_ E <-> A. x e. ( B \ { .0. } ) x e. E ) | 
						
							| 12 |  | isdomn5 |  |-  ( A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> A. x e. ( B \ { .0. } ) A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) | 
						
							| 13 | 10 11 12 | 3bitr4ri |  |-  ( A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( B \ { .0. } ) C_ E ) | 
						
							| 14 | 13 | anbi2i |  |-  ( ( R e. NzRing /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) | 
						
							| 15 | 5 14 | bitri |  |-  ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) |