Step |
Hyp |
Ref |
Expression |
1 |
|
isdomn2.b |
|- B = ( Base ` R ) |
2 |
|
isdomn2.t |
|- E = ( RLReg ` R ) |
3 |
|
isdomn2.z |
|- .0. = ( 0g ` R ) |
4 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
5 |
1 4 3
|
isdomn |
|- ( R e. Domn <-> ( R e. NzRing /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
6 |
|
dfss3 |
|- ( ( B \ { .0. } ) C_ E <-> A. x e. ( B \ { .0. } ) x e. E ) |
7 |
2 1 4 3
|
isrrg |
|- ( x e. E <-> ( x e. B /\ A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
8 |
7
|
baib |
|- ( x e. B -> ( x e. E <-> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
9 |
8
|
imbi2d |
|- ( x e. B -> ( ( x =/= .0. -> x e. E ) <-> ( x =/= .0. -> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) ) |
10 |
9
|
ralbiia |
|- ( A. x e. B ( x =/= .0. -> x e. E ) <-> A. x e. B ( x =/= .0. -> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
11 |
|
eldifsn |
|- ( x e. ( B \ { .0. } ) <-> ( x e. B /\ x =/= .0. ) ) |
12 |
11
|
imbi1i |
|- ( ( x e. ( B \ { .0. } ) -> x e. E ) <-> ( ( x e. B /\ x =/= .0. ) -> x e. E ) ) |
13 |
|
impexp |
|- ( ( ( x e. B /\ x =/= .0. ) -> x e. E ) <-> ( x e. B -> ( x =/= .0. -> x e. E ) ) ) |
14 |
12 13
|
bitri |
|- ( ( x e. ( B \ { .0. } ) -> x e. E ) <-> ( x e. B -> ( x =/= .0. -> x e. E ) ) ) |
15 |
14
|
ralbii2 |
|- ( A. x e. ( B \ { .0. } ) x e. E <-> A. x e. B ( x =/= .0. -> x e. E ) ) |
16 |
|
con34b |
|- ( ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( -. ( x = .0. \/ y = .0. ) -> -. ( x ( .r ` R ) y ) = .0. ) ) |
17 |
|
impexp |
|- ( ( ( -. x = .0. /\ -. y = .0. ) -> -. ( x ( .r ` R ) y ) = .0. ) <-> ( -. x = .0. -> ( -. y = .0. -> -. ( x ( .r ` R ) y ) = .0. ) ) ) |
18 |
|
ioran |
|- ( -. ( x = .0. \/ y = .0. ) <-> ( -. x = .0. /\ -. y = .0. ) ) |
19 |
18
|
imbi1i |
|- ( ( -. ( x = .0. \/ y = .0. ) -> -. ( x ( .r ` R ) y ) = .0. ) <-> ( ( -. x = .0. /\ -. y = .0. ) -> -. ( x ( .r ` R ) y ) = .0. ) ) |
20 |
|
df-ne |
|- ( x =/= .0. <-> -. x = .0. ) |
21 |
|
con34b |
|- ( ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) <-> ( -. y = .0. -> -. ( x ( .r ` R ) y ) = .0. ) ) |
22 |
20 21
|
imbi12i |
|- ( ( x =/= .0. -> ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) <-> ( -. x = .0. -> ( -. y = .0. -> -. ( x ( .r ` R ) y ) = .0. ) ) ) |
23 |
17 19 22
|
3bitr4i |
|- ( ( -. ( x = .0. \/ y = .0. ) -> -. ( x ( .r ` R ) y ) = .0. ) <-> ( x =/= .0. -> ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
24 |
16 23
|
bitri |
|- ( ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( x =/= .0. -> ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
25 |
24
|
ralbii |
|- ( A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> A. y e. B ( x =/= .0. -> ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
26 |
|
r19.21v |
|- ( A. y e. B ( x =/= .0. -> ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) <-> ( x =/= .0. -> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
27 |
25 26
|
bitri |
|- ( A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( x =/= .0. -> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
28 |
27
|
ralbii |
|- ( A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> A. x e. B ( x =/= .0. -> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
29 |
10 15 28
|
3bitr4i |
|- ( A. x e. ( B \ { .0. } ) x e. E <-> A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) |
30 |
6 29
|
bitr2i |
|- ( A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( B \ { .0. } ) C_ E ) |
31 |
30
|
anbi2i |
|- ( ( R e. NzRing /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) |
32 |
5 31
|
bitri |
|- ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) |