| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isdomn2.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | isdomn2.t |  |-  E = ( RLReg ` R ) | 
						
							| 3 |  | isdomn2.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 5 | 1 4 3 | isdomn |  |-  ( R e. Domn <-> ( R e. NzRing /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) | 
						
							| 6 |  | dfss3 |  |-  ( ( B \ { .0. } ) C_ E <-> A. x e. ( B \ { .0. } ) x e. E ) | 
						
							| 7 | 2 1 4 3 | isrrg |  |-  ( x e. E <-> ( x e. B /\ A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) | 
						
							| 8 | 7 | baib |  |-  ( x e. B -> ( x e. E <-> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) | 
						
							| 9 | 8 | imbi2d |  |-  ( x e. B -> ( ( x =/= .0. -> x e. E ) <-> ( x =/= .0. -> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) ) | 
						
							| 10 | 9 | ralbiia |  |-  ( A. x e. B ( x =/= .0. -> x e. E ) <-> A. x e. B ( x =/= .0. -> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) | 
						
							| 11 |  | eldifsn |  |-  ( x e. ( B \ { .0. } ) <-> ( x e. B /\ x =/= .0. ) ) | 
						
							| 12 | 11 | imbi1i |  |-  ( ( x e. ( B \ { .0. } ) -> x e. E ) <-> ( ( x e. B /\ x =/= .0. ) -> x e. E ) ) | 
						
							| 13 |  | impexp |  |-  ( ( ( x e. B /\ x =/= .0. ) -> x e. E ) <-> ( x e. B -> ( x =/= .0. -> x e. E ) ) ) | 
						
							| 14 | 12 13 | bitri |  |-  ( ( x e. ( B \ { .0. } ) -> x e. E ) <-> ( x e. B -> ( x =/= .0. -> x e. E ) ) ) | 
						
							| 15 | 14 | ralbii2 |  |-  ( A. x e. ( B \ { .0. } ) x e. E <-> A. x e. B ( x =/= .0. -> x e. E ) ) | 
						
							| 16 |  | con34b |  |-  ( ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( -. ( x = .0. \/ y = .0. ) -> -. ( x ( .r ` R ) y ) = .0. ) ) | 
						
							| 17 |  | impexp |  |-  ( ( ( -. x = .0. /\ -. y = .0. ) -> -. ( x ( .r ` R ) y ) = .0. ) <-> ( -. x = .0. -> ( -. y = .0. -> -. ( x ( .r ` R ) y ) = .0. ) ) ) | 
						
							| 18 |  | ioran |  |-  ( -. ( x = .0. \/ y = .0. ) <-> ( -. x = .0. /\ -. y = .0. ) ) | 
						
							| 19 | 18 | imbi1i |  |-  ( ( -. ( x = .0. \/ y = .0. ) -> -. ( x ( .r ` R ) y ) = .0. ) <-> ( ( -. x = .0. /\ -. y = .0. ) -> -. ( x ( .r ` R ) y ) = .0. ) ) | 
						
							| 20 |  | df-ne |  |-  ( x =/= .0. <-> -. x = .0. ) | 
						
							| 21 |  | con34b |  |-  ( ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) <-> ( -. y = .0. -> -. ( x ( .r ` R ) y ) = .0. ) ) | 
						
							| 22 | 20 21 | imbi12i |  |-  ( ( x =/= .0. -> ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) <-> ( -. x = .0. -> ( -. y = .0. -> -. ( x ( .r ` R ) y ) = .0. ) ) ) | 
						
							| 23 | 17 19 22 | 3bitr4i |  |-  ( ( -. ( x = .0. \/ y = .0. ) -> -. ( x ( .r ` R ) y ) = .0. ) <-> ( x =/= .0. -> ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) | 
						
							| 24 | 16 23 | bitri |  |-  ( ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( x =/= .0. -> ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) | 
						
							| 25 | 24 | ralbii |  |-  ( A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> A. y e. B ( x =/= .0. -> ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) | 
						
							| 26 |  | r19.21v |  |-  ( A. y e. B ( x =/= .0. -> ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) <-> ( x =/= .0. -> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) | 
						
							| 27 | 25 26 | bitri |  |-  ( A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( x =/= .0. -> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) | 
						
							| 28 | 27 | ralbii |  |-  ( A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> A. x e. B ( x =/= .0. -> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) | 
						
							| 29 | 10 15 28 | 3bitr4i |  |-  ( A. x e. ( B \ { .0. } ) x e. E <-> A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) | 
						
							| 30 | 6 29 | bitr2i |  |-  ( A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( B \ { .0. } ) C_ E ) | 
						
							| 31 | 30 | anbi2i |  |-  ( ( R e. NzRing /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) | 
						
							| 32 | 5 31 | bitri |  |-  ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) |