Step |
Hyp |
Ref |
Expression |
1 |
|
isdomn4r.b |
|- B = ( Base ` R ) |
2 |
|
isdomn4r.0 |
|- .0. = ( 0g ` R ) |
3 |
|
isdomn4r.x |
|- .x. = ( .r ` R ) |
4 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
5 |
4 1
|
opprbas |
|- B = ( Base ` ( oppR ` R ) ) |
6 |
4 2
|
oppr0 |
|- .0. = ( 0g ` ( oppR ` R ) ) |
7 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
8 |
5 6 7
|
isdomn4 |
|- ( ( oppR ` R ) e. Domn <-> ( ( oppR ` R ) e. NzRing /\ A. c e. ( B \ { .0. } ) A. a e. B A. b e. B ( ( c ( .r ` ( oppR ` R ) ) a ) = ( c ( .r ` ( oppR ` R ) ) b ) -> a = b ) ) ) |
9 |
4
|
opprdomnb |
|- ( R e. Domn <-> ( oppR ` R ) e. Domn ) |
10 |
4
|
opprnzrb |
|- ( R e. NzRing <-> ( oppR ` R ) e. NzRing ) |
11 |
1 3 4 7
|
opprmul |
|- ( c ( .r ` ( oppR ` R ) ) a ) = ( a .x. c ) |
12 |
1 3 4 7
|
opprmul |
|- ( c ( .r ` ( oppR ` R ) ) b ) = ( b .x. c ) |
13 |
11 12
|
eqeq12i |
|- ( ( c ( .r ` ( oppR ` R ) ) a ) = ( c ( .r ` ( oppR ` R ) ) b ) <-> ( a .x. c ) = ( b .x. c ) ) |
14 |
13
|
imbi1i |
|- ( ( ( c ( .r ` ( oppR ` R ) ) a ) = ( c ( .r ` ( oppR ` R ) ) b ) -> a = b ) <-> ( ( a .x. c ) = ( b .x. c ) -> a = b ) ) |
15 |
14
|
3ralbii |
|- ( A. a e. B A. b e. B A. c e. ( B \ { .0. } ) ( ( c ( .r ` ( oppR ` R ) ) a ) = ( c ( .r ` ( oppR ` R ) ) b ) -> a = b ) <-> A. a e. B A. b e. B A. c e. ( B \ { .0. } ) ( ( a .x. c ) = ( b .x. c ) -> a = b ) ) |
16 |
|
ralrot3 |
|- ( A. a e. B A. b e. B A. c e. ( B \ { .0. } ) ( ( c ( .r ` ( oppR ` R ) ) a ) = ( c ( .r ` ( oppR ` R ) ) b ) -> a = b ) <-> A. c e. ( B \ { .0. } ) A. a e. B A. b e. B ( ( c ( .r ` ( oppR ` R ) ) a ) = ( c ( .r ` ( oppR ` R ) ) b ) -> a = b ) ) |
17 |
15 16
|
bitr3i |
|- ( A. a e. B A. b e. B A. c e. ( B \ { .0. } ) ( ( a .x. c ) = ( b .x. c ) -> a = b ) <-> A. c e. ( B \ { .0. } ) A. a e. B A. b e. B ( ( c ( .r ` ( oppR ` R ) ) a ) = ( c ( .r ` ( oppR ` R ) ) b ) -> a = b ) ) |
18 |
10 17
|
anbi12i |
|- ( ( R e. NzRing /\ A. a e. B A. b e. B A. c e. ( B \ { .0. } ) ( ( a .x. c ) = ( b .x. c ) -> a = b ) ) <-> ( ( oppR ` R ) e. NzRing /\ A. c e. ( B \ { .0. } ) A. a e. B A. b e. B ( ( c ( .r ` ( oppR ` R ) ) a ) = ( c ( .r ` ( oppR ` R ) ) b ) -> a = b ) ) ) |
19 |
8 9 18
|
3bitr4i |
|- ( R e. Domn <-> ( R e. NzRing /\ A. a e. B A. b e. B A. c e. ( B \ { .0. } ) ( ( a .x. c ) = ( b .x. c ) -> a = b ) ) ) |