| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bi2.04 |  |-  ( ( -. a = .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) <-> ( ( a .x. b ) = .0. -> ( -. a = .0. -> b = .0. ) ) ) | 
						
							| 2 |  | df-ne |  |-  ( a =/= .0. <-> -. a = .0. ) | 
						
							| 3 | 2 | imbi1i |  |-  ( ( a =/= .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) <-> ( -. a = .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) ) | 
						
							| 4 |  | df-or |  |-  ( ( a = .0. \/ b = .0. ) <-> ( -. a = .0. -> b = .0. ) ) | 
						
							| 5 | 4 | imbi2i |  |-  ( ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) <-> ( ( a .x. b ) = .0. -> ( -. a = .0. -> b = .0. ) ) ) | 
						
							| 6 | 1 3 5 | 3bitr4ri |  |-  ( ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) <-> ( a =/= .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) ) | 
						
							| 7 | 6 | 2ralbii |  |-  ( A. a e. B A. b e. B ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) <-> A. a e. B A. b e. B ( a =/= .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) ) | 
						
							| 8 |  | r19.21v |  |-  ( A. b e. B ( a =/= .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) <-> ( a =/= .0. -> A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) ) | 
						
							| 9 | 8 | ralbii |  |-  ( A. a e. B A. b e. B ( a =/= .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) <-> A. a e. B ( a =/= .0. -> A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) ) | 
						
							| 10 |  | raldifsnb |  |-  ( A. a e. B ( a =/= .0. -> A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) <-> A. a e. ( B \ { .0. } ) A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) | 
						
							| 11 | 7 9 10 | 3bitri |  |-  ( A. a e. B A. b e. B ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) <-> A. a e. ( B \ { .0. } ) A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) |