Step |
Hyp |
Ref |
Expression |
1 |
|
isdomn6.b |
|- B = ( Base ` R ) |
2 |
|
isdomn6.t |
|- E = ( RLReg ` R ) |
3 |
|
isdomn6.z |
|- .0. = ( 0g ` R ) |
4 |
1 2 3
|
isdomn2 |
|- ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) |
5 |
2 1
|
rrgss |
|- E C_ B |
6 |
5
|
a1i |
|- ( R e. NzRing -> E C_ B ) |
7 |
2 3
|
rrgnz |
|- ( R e. NzRing -> -. .0. e. E ) |
8 |
|
ssdifsn |
|- ( E C_ ( B \ { .0. } ) <-> ( E C_ B /\ -. .0. e. E ) ) |
9 |
6 7 8
|
sylanbrc |
|- ( R e. NzRing -> E C_ ( B \ { .0. } ) ) |
10 |
|
sssseq |
|- ( E C_ ( B \ { .0. } ) -> ( ( B \ { .0. } ) C_ E <-> ( B \ { .0. } ) = E ) ) |
11 |
9 10
|
syl |
|- ( R e. NzRing -> ( ( B \ { .0. } ) C_ E <-> ( B \ { .0. } ) = E ) ) |
12 |
11
|
pm5.32i |
|- ( ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) <-> ( R e. NzRing /\ ( B \ { .0. } ) = E ) ) |
13 |
4 12
|
bitri |
|- ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) = E ) ) |