| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isdomn6.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | isdomn6.t |  |-  E = ( RLReg ` R ) | 
						
							| 3 |  | isdomn6.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 | 1 2 3 | isdomn2 |  |-  ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) | 
						
							| 5 | 2 1 | rrgss |  |-  E C_ B | 
						
							| 6 | 5 | a1i |  |-  ( R e. NzRing -> E C_ B ) | 
						
							| 7 | 2 3 | rrgnz |  |-  ( R e. NzRing -> -. .0. e. E ) | 
						
							| 8 |  | ssdifsn |  |-  ( E C_ ( B \ { .0. } ) <-> ( E C_ B /\ -. .0. e. E ) ) | 
						
							| 9 | 6 7 8 | sylanbrc |  |-  ( R e. NzRing -> E C_ ( B \ { .0. } ) ) | 
						
							| 10 |  | sssseq |  |-  ( E C_ ( B \ { .0. } ) -> ( ( B \ { .0. } ) C_ E <-> ( B \ { .0. } ) = E ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( R e. NzRing -> ( ( B \ { .0. } ) C_ E <-> ( B \ { .0. } ) = E ) ) | 
						
							| 12 | 11 | pm5.32i |  |-  ( ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) <-> ( R e. NzRing /\ ( B \ { .0. } ) = E ) ) | 
						
							| 13 | 4 12 | bitri |  |-  ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) = E ) ) |