Step |
Hyp |
Ref |
Expression |
1 |
|
isdrng.b |
|- B = ( Base ` R ) |
2 |
|
isdrng.u |
|- U = ( Unit ` R ) |
3 |
|
isdrng.z |
|- .0. = ( 0g ` R ) |
4 |
|
fveq2 |
|- ( r = R -> ( Unit ` r ) = ( Unit ` R ) ) |
5 |
4 2
|
eqtr4di |
|- ( r = R -> ( Unit ` r ) = U ) |
6 |
|
fveq2 |
|- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
7 |
6 1
|
eqtr4di |
|- ( r = R -> ( Base ` r ) = B ) |
8 |
|
fveq2 |
|- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
9 |
8 3
|
eqtr4di |
|- ( r = R -> ( 0g ` r ) = .0. ) |
10 |
9
|
sneqd |
|- ( r = R -> { ( 0g ` r ) } = { .0. } ) |
11 |
7 10
|
difeq12d |
|- ( r = R -> ( ( Base ` r ) \ { ( 0g ` r ) } ) = ( B \ { .0. } ) ) |
12 |
5 11
|
eqeq12d |
|- ( r = R -> ( ( Unit ` r ) = ( ( Base ` r ) \ { ( 0g ` r ) } ) <-> U = ( B \ { .0. } ) ) ) |
13 |
|
df-drng |
|- DivRing = { r e. Ring | ( Unit ` r ) = ( ( Base ` r ) \ { ( 0g ` r ) } ) } |
14 |
12 13
|
elrab2 |
|- ( R e. DivRing <-> ( R e. Ring /\ U = ( B \ { .0. } ) ) ) |