| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isdrng2.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | isdrng2.z |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | isdrng2.g |  |-  G = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) | 
						
							| 4 |  | eqid |  |-  ( Unit ` R ) = ( Unit ` R ) | 
						
							| 5 | 1 4 2 | isdrng |  |-  ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) ) | 
						
							| 6 |  | oveq2 |  |-  ( ( Unit ` R ) = ( B \ { .0. } ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) | 
						
							| 8 | 7 3 | eqtr4di |  |-  ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = G ) | 
						
							| 9 |  | eqid |  |-  ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( Unit ` R ) ) | 
						
							| 10 | 4 9 | unitgrp |  |-  ( R e. Ring -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. Grp ) | 
						
							| 11 | 10 | adantr |  |-  ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. Grp ) | 
						
							| 12 | 8 11 | eqeltrrd |  |-  ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) -> G e. Grp ) | 
						
							| 13 | 1 4 | unitcl |  |-  ( x e. ( Unit ` R ) -> x e. B ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> x e. B ) | 
						
							| 15 |  | difss |  |-  ( B \ { .0. } ) C_ B | 
						
							| 16 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 17 | 16 1 | mgpbas |  |-  B = ( Base ` ( mulGrp ` R ) ) | 
						
							| 18 | 3 17 | ressbas2 |  |-  ( ( B \ { .0. } ) C_ B -> ( B \ { .0. } ) = ( Base ` G ) ) | 
						
							| 19 | 15 18 | ax-mp |  |-  ( B \ { .0. } ) = ( Base ` G ) | 
						
							| 20 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 21 | 19 20 | grpidcl |  |-  ( G e. Grp -> ( 0g ` G ) e. ( B \ { .0. } ) ) | 
						
							| 22 | 21 | ad2antlr |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( 0g ` G ) e. ( B \ { .0. } ) ) | 
						
							| 23 |  | eldifsn |  |-  ( ( 0g ` G ) e. ( B \ { .0. } ) <-> ( ( 0g ` G ) e. B /\ ( 0g ` G ) =/= .0. ) ) | 
						
							| 24 | 22 23 | sylib |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( 0g ` G ) e. B /\ ( 0g ` G ) =/= .0. ) ) | 
						
							| 25 | 24 | simprd |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( 0g ` G ) =/= .0. ) | 
						
							| 26 |  | simpll |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> R e. Ring ) | 
						
							| 27 | 22 | eldifad |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( 0g ` G ) e. B ) | 
						
							| 28 |  | simpr |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> x e. ( Unit ` R ) ) | 
						
							| 29 |  | eqid |  |-  ( /r ` R ) = ( /r ` R ) | 
						
							| 30 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 31 | 1 4 29 30 | dvrcan1 |  |-  ( ( R e. Ring /\ ( 0g ` G ) e. B /\ x e. ( Unit ` R ) ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) = ( 0g ` G ) ) | 
						
							| 32 | 26 27 28 31 | syl3anc |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) = ( 0g ` G ) ) | 
						
							| 33 | 1 4 29 | dvrcl |  |-  ( ( R e. Ring /\ ( 0g ` G ) e. B /\ x e. ( Unit ` R ) ) -> ( ( 0g ` G ) ( /r ` R ) x ) e. B ) | 
						
							| 34 | 26 27 28 33 | syl3anc |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( 0g ` G ) ( /r ` R ) x ) e. B ) | 
						
							| 35 | 1 30 2 | ringrz |  |-  ( ( R e. Ring /\ ( ( 0g ` G ) ( /r ` R ) x ) e. B ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) = .0. ) | 
						
							| 36 | 26 34 35 | syl2anc |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) = .0. ) | 
						
							| 37 | 25 32 36 | 3netr4d |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) =/= ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) ) | 
						
							| 38 |  | oveq2 |  |-  ( x = .0. -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) = ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) ) | 
						
							| 39 | 38 | necon3i |  |-  ( ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) =/= ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) -> x =/= .0. ) | 
						
							| 40 | 37 39 | syl |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> x =/= .0. ) | 
						
							| 41 |  | eldifsn |  |-  ( x e. ( B \ { .0. } ) <-> ( x e. B /\ x =/= .0. ) ) | 
						
							| 42 | 14 40 41 | sylanbrc |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> x e. ( B \ { .0. } ) ) | 
						
							| 43 | 42 | ex |  |-  ( ( R e. Ring /\ G e. Grp ) -> ( x e. ( Unit ` R ) -> x e. ( B \ { .0. } ) ) ) | 
						
							| 44 | 43 | ssrdv |  |-  ( ( R e. Ring /\ G e. Grp ) -> ( Unit ` R ) C_ ( B \ { .0. } ) ) | 
						
							| 45 |  | eldifi |  |-  ( x e. ( B \ { .0. } ) -> x e. B ) | 
						
							| 46 | 45 | adantl |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x e. B ) | 
						
							| 47 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 48 | 19 47 | grpinvcl |  |-  ( ( G e. Grp /\ x e. ( B \ { .0. } ) ) -> ( ( invg ` G ) ` x ) e. ( B \ { .0. } ) ) | 
						
							| 49 | 48 | adantll |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( invg ` G ) ` x ) e. ( B \ { .0. } ) ) | 
						
							| 50 | 49 | eldifad |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( invg ` G ) ` x ) e. B ) | 
						
							| 51 |  | eqid |  |-  ( ||r ` R ) = ( ||r ` R ) | 
						
							| 52 | 1 51 30 | dvdsrmul |  |-  ( ( x e. B /\ ( ( invg ` G ) ` x ) e. B ) -> x ( ||r ` R ) ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) ) | 
						
							| 53 | 46 50 52 | syl2anc |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x ( ||r ` R ) ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) ) | 
						
							| 54 | 1 | fvexi |  |-  B e. _V | 
						
							| 55 |  | difexg |  |-  ( B e. _V -> ( B \ { .0. } ) e. _V ) | 
						
							| 56 | 16 30 | mgpplusg |  |-  ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) | 
						
							| 57 | 3 56 | ressplusg |  |-  ( ( B \ { .0. } ) e. _V -> ( .r ` R ) = ( +g ` G ) ) | 
						
							| 58 | 54 55 57 | mp2b |  |-  ( .r ` R ) = ( +g ` G ) | 
						
							| 59 | 19 58 20 47 | grplinv |  |-  ( ( G e. Grp /\ x e. ( B \ { .0. } ) ) -> ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) = ( 0g ` G ) ) | 
						
							| 60 | 59 | adantll |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) = ( 0g ` G ) ) | 
						
							| 61 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 62 | 1 61 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. B ) | 
						
							| 63 | 1 30 61 | ringlidm |  |-  ( ( R e. Ring /\ ( 1r ` R ) e. B ) -> ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) | 
						
							| 64 | 62 63 | mpdan |  |-  ( R e. Ring -> ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) | 
						
							| 65 | 64 | adantr |  |-  ( ( R e. Ring /\ G e. Grp ) -> ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) | 
						
							| 66 |  | simpr |  |-  ( ( R e. Ring /\ G e. Grp ) -> G e. Grp ) | 
						
							| 67 | 4 61 | 1unit |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Unit ` R ) ) | 
						
							| 68 | 67 | adantr |  |-  ( ( R e. Ring /\ G e. Grp ) -> ( 1r ` R ) e. ( Unit ` R ) ) | 
						
							| 69 | 44 68 | sseldd |  |-  ( ( R e. Ring /\ G e. Grp ) -> ( 1r ` R ) e. ( B \ { .0. } ) ) | 
						
							| 70 | 19 58 20 | grpid |  |-  ( ( G e. Grp /\ ( 1r ` R ) e. ( B \ { .0. } ) ) -> ( ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) <-> ( 0g ` G ) = ( 1r ` R ) ) ) | 
						
							| 71 | 66 69 70 | syl2anc |  |-  ( ( R e. Ring /\ G e. Grp ) -> ( ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) <-> ( 0g ` G ) = ( 1r ` R ) ) ) | 
						
							| 72 | 65 71 | mpbid |  |-  ( ( R e. Ring /\ G e. Grp ) -> ( 0g ` G ) = ( 1r ` R ) ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( 0g ` G ) = ( 1r ` R ) ) | 
						
							| 74 | 60 73 | eqtrd |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) = ( 1r ` R ) ) | 
						
							| 75 | 53 74 | breqtrd |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x ( ||r ` R ) ( 1r ` R ) ) | 
						
							| 76 |  | eqid |  |-  ( oppR ` R ) = ( oppR ` R ) | 
						
							| 77 | 76 1 | opprbas |  |-  B = ( Base ` ( oppR ` R ) ) | 
						
							| 78 |  | eqid |  |-  ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) | 
						
							| 79 |  | eqid |  |-  ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) | 
						
							| 80 | 77 78 79 | dvdsrmul |  |-  ( ( x e. B /\ ( ( invg ` G ) ` x ) e. B ) -> x ( ||r ` ( oppR ` R ) ) ( ( ( invg ` G ) ` x ) ( .r ` ( oppR ` R ) ) x ) ) | 
						
							| 81 | 46 50 80 | syl2anc |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x ( ||r ` ( oppR ` R ) ) ( ( ( invg ` G ) ` x ) ( .r ` ( oppR ` R ) ) x ) ) | 
						
							| 82 | 1 30 76 79 | opprmul |  |-  ( ( ( invg ` G ) ` x ) ( .r ` ( oppR ` R ) ) x ) = ( x ( .r ` R ) ( ( invg ` G ) ` x ) ) | 
						
							| 83 | 19 58 20 47 | grprinv |  |-  ( ( G e. Grp /\ x e. ( B \ { .0. } ) ) -> ( x ( .r ` R ) ( ( invg ` G ) ` x ) ) = ( 0g ` G ) ) | 
						
							| 84 | 83 | adantll |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( x ( .r ` R ) ( ( invg ` G ) ` x ) ) = ( 0g ` G ) ) | 
						
							| 85 | 84 73 | eqtrd |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( x ( .r ` R ) ( ( invg ` G ) ` x ) ) = ( 1r ` R ) ) | 
						
							| 86 | 82 85 | eqtrid |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( ( invg ` G ) ` x ) ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) | 
						
							| 87 | 81 86 | breqtrd |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) | 
						
							| 88 | 4 61 51 76 78 | isunit |  |-  ( x e. ( Unit ` R ) <-> ( x ( ||r ` R ) ( 1r ` R ) /\ x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) | 
						
							| 89 | 75 87 88 | sylanbrc |  |-  ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x e. ( Unit ` R ) ) | 
						
							| 90 | 44 89 | eqelssd |  |-  ( ( R e. Ring /\ G e. Grp ) -> ( Unit ` R ) = ( B \ { .0. } ) ) | 
						
							| 91 | 12 90 | impbida |  |-  ( R e. Ring -> ( ( Unit ` R ) = ( B \ { .0. } ) <-> G e. Grp ) ) | 
						
							| 92 | 91 | pm5.32i |  |-  ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) <-> ( R e. Ring /\ G e. Grp ) ) | 
						
							| 93 | 5 92 | bitri |  |-  ( R e. DivRing <-> ( R e. Ring /\ G e. Grp ) ) |