| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isdrngd.b |
|- ( ph -> B = ( Base ` R ) ) |
| 2 |
|
isdrngd.t |
|- ( ph -> .x. = ( .r ` R ) ) |
| 3 |
|
isdrngd.z |
|- ( ph -> .0. = ( 0g ` R ) ) |
| 4 |
|
isdrngd.u |
|- ( ph -> .1. = ( 1r ` R ) ) |
| 5 |
|
isdrngd.r |
|- ( ph -> R e. Ring ) |
| 6 |
|
isdrngd.n |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( x .x. y ) =/= .0. ) |
| 7 |
|
isdrngd.o |
|- ( ph -> .1. =/= .0. ) |
| 8 |
|
isdrngd.i |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> I e. B ) |
| 9 |
|
isdrngd.k |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> ( I .x. x ) = .1. ) |
| 10 |
|
difss |
|- ( B \ { .0. } ) C_ B |
| 11 |
10 1
|
sseqtrid |
|- ( ph -> ( B \ { .0. } ) C_ ( Base ` R ) ) |
| 12 |
|
eqid |
|- ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) |
| 13 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 14 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 15 |
13 14
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 16 |
12 15
|
ressbas2 |
|- ( ( B \ { .0. } ) C_ ( Base ` R ) -> ( B \ { .0. } ) = ( Base ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
| 17 |
11 16
|
syl |
|- ( ph -> ( B \ { .0. } ) = ( Base ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
| 18 |
|
fvex |
|- ( Base ` R ) e. _V |
| 19 |
1 18
|
eqeltrdi |
|- ( ph -> B e. _V ) |
| 20 |
|
difexg |
|- ( B e. _V -> ( B \ { .0. } ) e. _V ) |
| 21 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 22 |
13 21
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 23 |
12 22
|
ressplusg |
|- ( ( B \ { .0. } ) e. _V -> ( .r ` R ) = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
| 24 |
19 20 23
|
3syl |
|- ( ph -> ( .r ` R ) = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
| 25 |
2 24
|
eqtrd |
|- ( ph -> .x. = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
| 26 |
|
eldifsn |
|- ( x e. ( B \ { .0. } ) <-> ( x e. B /\ x =/= .0. ) ) |
| 27 |
|
eldifsn |
|- ( y e. ( B \ { .0. } ) <-> ( y e. B /\ y =/= .0. ) ) |
| 28 |
14 21
|
ringcl |
|- ( ( R e. Ring /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( .r ` R ) y ) e. ( Base ` R ) ) |
| 29 |
5 28
|
syl3an1 |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( .r ` R ) y ) e. ( Base ` R ) ) |
| 30 |
29
|
3expib |
|- ( ph -> ( ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( .r ` R ) y ) e. ( Base ` R ) ) ) |
| 31 |
1
|
eleq2d |
|- ( ph -> ( x e. B <-> x e. ( Base ` R ) ) ) |
| 32 |
1
|
eleq2d |
|- ( ph -> ( y e. B <-> y e. ( Base ` R ) ) ) |
| 33 |
31 32
|
anbi12d |
|- ( ph -> ( ( x e. B /\ y e. B ) <-> ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) ) |
| 34 |
2
|
oveqd |
|- ( ph -> ( x .x. y ) = ( x ( .r ` R ) y ) ) |
| 35 |
34 1
|
eleq12d |
|- ( ph -> ( ( x .x. y ) e. B <-> ( x ( .r ` R ) y ) e. ( Base ` R ) ) ) |
| 36 |
30 33 35
|
3imtr4d |
|- ( ph -> ( ( x e. B /\ y e. B ) -> ( x .x. y ) e. B ) ) |
| 37 |
36
|
3impib |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( x .x. y ) e. B ) |
| 38 |
37
|
3adant2r |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ y e. B ) -> ( x .x. y ) e. B ) |
| 39 |
38
|
3adant3r |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( x .x. y ) e. B ) |
| 40 |
|
eldifsn |
|- ( ( x .x. y ) e. ( B \ { .0. } ) <-> ( ( x .x. y ) e. B /\ ( x .x. y ) =/= .0. ) ) |
| 41 |
39 6 40
|
sylanbrc |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( x .x. y ) e. ( B \ { .0. } ) ) |
| 42 |
27 41
|
syl3an3b |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ y e. ( B \ { .0. } ) ) -> ( x .x. y ) e. ( B \ { .0. } ) ) |
| 43 |
26 42
|
syl3an2b |
|- ( ( ph /\ x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) -> ( x .x. y ) e. ( B \ { .0. } ) ) |
| 44 |
14 21
|
ringass |
|- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x ( .r ` R ) y ) ( .r ` R ) z ) = ( x ( .r ` R ) ( y ( .r ` R ) z ) ) ) |
| 45 |
44
|
ex |
|- ( R e. Ring -> ( ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) -> ( ( x ( .r ` R ) y ) ( .r ` R ) z ) = ( x ( .r ` R ) ( y ( .r ` R ) z ) ) ) ) |
| 46 |
5 45
|
syl |
|- ( ph -> ( ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) -> ( ( x ( .r ` R ) y ) ( .r ` R ) z ) = ( x ( .r ` R ) ( y ( .r ` R ) z ) ) ) ) |
| 47 |
1
|
eleq2d |
|- ( ph -> ( z e. B <-> z e. ( Base ` R ) ) ) |
| 48 |
31 32 47
|
3anbi123d |
|- ( ph -> ( ( x e. B /\ y e. B /\ z e. B ) <-> ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) ) |
| 49 |
|
eqidd |
|- ( ph -> z = z ) |
| 50 |
2 34 49
|
oveq123d |
|- ( ph -> ( ( x .x. y ) .x. z ) = ( ( x ( .r ` R ) y ) ( .r ` R ) z ) ) |
| 51 |
|
eqidd |
|- ( ph -> x = x ) |
| 52 |
2
|
oveqd |
|- ( ph -> ( y .x. z ) = ( y ( .r ` R ) z ) ) |
| 53 |
2 51 52
|
oveq123d |
|- ( ph -> ( x .x. ( y .x. z ) ) = ( x ( .r ` R ) ( y ( .r ` R ) z ) ) ) |
| 54 |
50 53
|
eqeq12d |
|- ( ph -> ( ( ( x .x. y ) .x. z ) = ( x .x. ( y .x. z ) ) <-> ( ( x ( .r ` R ) y ) ( .r ` R ) z ) = ( x ( .r ` R ) ( y ( .r ` R ) z ) ) ) ) |
| 55 |
46 48 54
|
3imtr4d |
|- ( ph -> ( ( x e. B /\ y e. B /\ z e. B ) -> ( ( x .x. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) ) |
| 56 |
|
eldifi |
|- ( x e. ( B \ { .0. } ) -> x e. B ) |
| 57 |
|
eldifi |
|- ( y e. ( B \ { .0. } ) -> y e. B ) |
| 58 |
|
eldifi |
|- ( z e. ( B \ { .0. } ) -> z e. B ) |
| 59 |
56 57 58
|
3anim123i |
|- ( ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) /\ z e. ( B \ { .0. } ) ) -> ( x e. B /\ y e. B /\ z e. B ) ) |
| 60 |
55 59
|
impel |
|- ( ( ph /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) /\ z e. ( B \ { .0. } ) ) ) -> ( ( x .x. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
| 61 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 62 |
14 61
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 63 |
5 62
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
| 64 |
63 4 1
|
3eltr4d |
|- ( ph -> .1. e. B ) |
| 65 |
|
eldifsn |
|- ( .1. e. ( B \ { .0. } ) <-> ( .1. e. B /\ .1. =/= .0. ) ) |
| 66 |
64 7 65
|
sylanbrc |
|- ( ph -> .1. e. ( B \ { .0. } ) ) |
| 67 |
14 21 61
|
ringlidm |
|- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) x ) = x ) |
| 68 |
67
|
ex |
|- ( R e. Ring -> ( x e. ( Base ` R ) -> ( ( 1r ` R ) ( .r ` R ) x ) = x ) ) |
| 69 |
5 68
|
syl |
|- ( ph -> ( x e. ( Base ` R ) -> ( ( 1r ` R ) ( .r ` R ) x ) = x ) ) |
| 70 |
2 4 51
|
oveq123d |
|- ( ph -> ( .1. .x. x ) = ( ( 1r ` R ) ( .r ` R ) x ) ) |
| 71 |
70
|
eqeq1d |
|- ( ph -> ( ( .1. .x. x ) = x <-> ( ( 1r ` R ) ( .r ` R ) x ) = x ) ) |
| 72 |
69 31 71
|
3imtr4d |
|- ( ph -> ( x e. B -> ( .1. .x. x ) = x ) ) |
| 73 |
72
|
imp |
|- ( ( ph /\ x e. B ) -> ( .1. .x. x ) = x ) |
| 74 |
73
|
adantrr |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> ( .1. .x. x ) = x ) |
| 75 |
26 74
|
sylan2b |
|- ( ( ph /\ x e. ( B \ { .0. } ) ) -> ( .1. .x. x ) = x ) |
| 76 |
7
|
adantr |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> .1. =/= .0. ) |
| 77 |
|
simpr |
|- ( ( ( ph /\ ( x e. B /\ x =/= .0. ) ) /\ I = .0. ) -> I = .0. ) |
| 78 |
77
|
oveq1d |
|- ( ( ( ph /\ ( x e. B /\ x =/= .0. ) ) /\ I = .0. ) -> ( I .x. x ) = ( .0. .x. x ) ) |
| 79 |
9
|
adantr |
|- ( ( ( ph /\ ( x e. B /\ x =/= .0. ) ) /\ I = .0. ) -> ( I .x. x ) = .1. ) |
| 80 |
31
|
biimpa |
|- ( ( ph /\ x e. B ) -> x e. ( Base ` R ) ) |
| 81 |
80
|
adantrr |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> x e. ( Base ` R ) ) |
| 82 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 83 |
14 21 82
|
ringlz |
|- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) x ) = ( 0g ` R ) ) |
| 84 |
5 81 83
|
syl2an2r |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> ( ( 0g ` R ) ( .r ` R ) x ) = ( 0g ` R ) ) |
| 85 |
2 3 51
|
oveq123d |
|- ( ph -> ( .0. .x. x ) = ( ( 0g ` R ) ( .r ` R ) x ) ) |
| 86 |
85
|
adantr |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> ( .0. .x. x ) = ( ( 0g ` R ) ( .r ` R ) x ) ) |
| 87 |
3
|
adantr |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> .0. = ( 0g ` R ) ) |
| 88 |
84 86 87
|
3eqtr4d |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> ( .0. .x. x ) = .0. ) |
| 89 |
88
|
adantr |
|- ( ( ( ph /\ ( x e. B /\ x =/= .0. ) ) /\ I = .0. ) -> ( .0. .x. x ) = .0. ) |
| 90 |
78 79 89
|
3eqtr3d |
|- ( ( ( ph /\ ( x e. B /\ x =/= .0. ) ) /\ I = .0. ) -> .1. = .0. ) |
| 91 |
76 90
|
mteqand |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> I =/= .0. ) |
| 92 |
|
eldifsn |
|- ( I e. ( B \ { .0. } ) <-> ( I e. B /\ I =/= .0. ) ) |
| 93 |
8 91 92
|
sylanbrc |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> I e. ( B \ { .0. } ) ) |
| 94 |
26 93
|
sylan2b |
|- ( ( ph /\ x e. ( B \ { .0. } ) ) -> I e. ( B \ { .0. } ) ) |
| 95 |
26 9
|
sylan2b |
|- ( ( ph /\ x e. ( B \ { .0. } ) ) -> ( I .x. x ) = .1. ) |
| 96 |
17 25 43 60 66 75 94 95
|
isgrpd |
|- ( ph -> ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp ) |
| 97 |
3
|
sneqd |
|- ( ph -> { .0. } = { ( 0g ` R ) } ) |
| 98 |
1 97
|
difeq12d |
|- ( ph -> ( B \ { .0. } ) = ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
| 99 |
98
|
oveq2d |
|- ( ph -> ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) = ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) |
| 100 |
99
|
eleq1d |
|- ( ph -> ( ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp <-> ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) e. Grp ) ) |
| 101 |
100
|
anbi2d |
|- ( ph -> ( ( R e. Ring /\ ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp ) <-> ( R e. Ring /\ ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) e. Grp ) ) ) |
| 102 |
5 96 101
|
mpbi2and |
|- ( ph -> ( R e. Ring /\ ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) e. Grp ) ) |
| 103 |
|
eqid |
|- ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) = ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
| 104 |
14 82 103
|
isdrng2 |
|- ( R e. DivRing <-> ( R e. Ring /\ ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) e. Grp ) ) |
| 105 |
102 104
|
sylibr |
|- ( ph -> R e. DivRing ) |