Description: Alternate proof of iseqsetv-cleq . The expression E. x x = A does not depend on a particular choice of the set variable. Use this theorem in contexts where df-cleq or ax-ext is not referenced elsewhere in your proof. It is proven from a specific implementation (class builder, axiom df-clab ) of the primitive term x e. A . (Contributed by BJ, 29-Apr-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | iseqsetv-clel | |- ( E. x x = A <-> E. y y = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issettru | |- ( E. x x = A <-> A e. { z | T. } ) |
|
2 | issettru | |- ( E. y y = A <-> A e. { z | T. } ) |
|
3 | 1 2 | bitr4i | |- ( E. x x = A <-> E. y y = A ) |