Step |
Hyp |
Ref |
Expression |
1 |
|
iserabs.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
iserabs.2 |
|- ( ph -> seq M ( + , F ) ~~> A ) |
3 |
|
iserabs.3 |
|- ( ph -> seq M ( + , G ) ~~> B ) |
4 |
|
iserabs.5 |
|- ( ph -> M e. ZZ ) |
5 |
|
iserabs.6 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
6 |
|
iserabs.7 |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) |
7 |
1
|
fvexi |
|- Z e. _V |
8 |
7
|
mptex |
|- ( m e. Z |-> ( abs ` ( seq M ( + , F ) ` m ) ) ) e. _V |
9 |
8
|
a1i |
|- ( ph -> ( m e. Z |-> ( abs ` ( seq M ( + , F ) ` m ) ) ) e. _V ) |
10 |
1 4 5
|
serf |
|- ( ph -> seq M ( + , F ) : Z --> CC ) |
11 |
10
|
ffvelrnda |
|- ( ( ph /\ n e. Z ) -> ( seq M ( + , F ) ` n ) e. CC ) |
12 |
|
2fveq3 |
|- ( m = n -> ( abs ` ( seq M ( + , F ) ` m ) ) = ( abs ` ( seq M ( + , F ) ` n ) ) ) |
13 |
|
eqid |
|- ( m e. Z |-> ( abs ` ( seq M ( + , F ) ` m ) ) ) = ( m e. Z |-> ( abs ` ( seq M ( + , F ) ` m ) ) ) |
14 |
|
fvex |
|- ( abs ` ( seq M ( + , F ) ` n ) ) e. _V |
15 |
12 13 14
|
fvmpt |
|- ( n e. Z -> ( ( m e. Z |-> ( abs ` ( seq M ( + , F ) ` m ) ) ) ` n ) = ( abs ` ( seq M ( + , F ) ` n ) ) ) |
16 |
15
|
adantl |
|- ( ( ph /\ n e. Z ) -> ( ( m e. Z |-> ( abs ` ( seq M ( + , F ) ` m ) ) ) ` n ) = ( abs ` ( seq M ( + , F ) ` n ) ) ) |
17 |
1 2 9 4 11 16
|
climabs |
|- ( ph -> ( m e. Z |-> ( abs ` ( seq M ( + , F ) ` m ) ) ) ~~> ( abs ` A ) ) |
18 |
11
|
abscld |
|- ( ( ph /\ n e. Z ) -> ( abs ` ( seq M ( + , F ) ` n ) ) e. RR ) |
19 |
16 18
|
eqeltrd |
|- ( ( ph /\ n e. Z ) -> ( ( m e. Z |-> ( abs ` ( seq M ( + , F ) ` m ) ) ) ` n ) e. RR ) |
20 |
5
|
abscld |
|- ( ( ph /\ k e. Z ) -> ( abs ` ( F ` k ) ) e. RR ) |
21 |
6 20
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
22 |
1 4 21
|
serfre |
|- ( ph -> seq M ( + , G ) : Z --> RR ) |
23 |
22
|
ffvelrnda |
|- ( ( ph /\ n e. Z ) -> ( seq M ( + , G ) ` n ) e. RR ) |
24 |
|
simpr |
|- ( ( ph /\ n e. Z ) -> n e. Z ) |
25 |
24 1
|
eleqtrdi |
|- ( ( ph /\ n e. Z ) -> n e. ( ZZ>= ` M ) ) |
26 |
|
elfzuz |
|- ( k e. ( M ... n ) -> k e. ( ZZ>= ` M ) ) |
27 |
26 1
|
eleqtrrdi |
|- ( k e. ( M ... n ) -> k e. Z ) |
28 |
27 5
|
sylan2 |
|- ( ( ph /\ k e. ( M ... n ) ) -> ( F ` k ) e. CC ) |
29 |
28
|
adantlr |
|- ( ( ( ph /\ n e. Z ) /\ k e. ( M ... n ) ) -> ( F ` k ) e. CC ) |
30 |
27 6
|
sylan2 |
|- ( ( ph /\ k e. ( M ... n ) ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) |
31 |
30
|
adantlr |
|- ( ( ( ph /\ n e. Z ) /\ k e. ( M ... n ) ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) |
32 |
25 29 31
|
seqabs |
|- ( ( ph /\ n e. Z ) -> ( abs ` ( seq M ( + , F ) ` n ) ) <_ ( seq M ( + , G ) ` n ) ) |
33 |
16 32
|
eqbrtrd |
|- ( ( ph /\ n e. Z ) -> ( ( m e. Z |-> ( abs ` ( seq M ( + , F ) ` m ) ) ) ` n ) <_ ( seq M ( + , G ) ` n ) ) |
34 |
1 4 17 3 19 23 33
|
climle |
|- ( ph -> ( abs ` A ) <_ B ) |