| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iseralt.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | iseralt.2 |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | iseralt.3 |  |-  ( ph -> G : Z --> RR ) | 
						
							| 4 |  | iseralt.4 |  |-  ( ( ph /\ k e. Z ) -> ( G ` ( k + 1 ) ) <_ ( G ` k ) ) | 
						
							| 5 |  | iseralt.5 |  |-  ( ph -> G ~~> 0 ) | 
						
							| 6 |  | iseralt.6 |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) ) | 
						
							| 7 |  | seqex |  |-  seq M ( + , F ) e. _V | 
						
							| 8 | 7 | a1i |  |-  ( ph -> seq M ( + , F ) e. _V ) | 
						
							| 9 |  | climrel |  |-  Rel ~~> | 
						
							| 10 | 9 | brrelex1i |  |-  ( G ~~> 0 -> G e. _V ) | 
						
							| 11 | 5 10 | syl |  |-  ( ph -> G e. _V ) | 
						
							| 12 |  | eqidd |  |-  ( ( ph /\ n e. Z ) -> ( G ` n ) = ( G ` n ) ) | 
						
							| 13 | 3 | ffvelcdmda |  |-  ( ( ph /\ n e. Z ) -> ( G ` n ) e. RR ) | 
						
							| 14 | 13 | recnd |  |-  ( ( ph /\ n e. Z ) -> ( G ` n ) e. CC ) | 
						
							| 15 | 1 2 11 12 14 | clim0c |  |-  ( ph -> ( G ~~> 0 <-> A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x ) ) | 
						
							| 16 | 5 15 | mpbid |  |-  ( ph -> A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x ) | 
						
							| 17 |  | simpr |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> j e. Z ) | 
						
							| 18 | 17 1 | eleqtrdi |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) | 
						
							| 19 |  | eluzelz |  |-  ( j e. ( ZZ>= ` M ) -> j e. ZZ ) | 
						
							| 20 |  | uzid |  |-  ( j e. ZZ -> j e. ( ZZ>= ` j ) ) | 
						
							| 21 | 18 19 20 | 3syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> j e. ( ZZ>= ` j ) ) | 
						
							| 22 |  | peano2uz |  |-  ( j e. ( ZZ>= ` j ) -> ( j + 1 ) e. ( ZZ>= ` j ) ) | 
						
							| 23 |  | 2fveq3 |  |-  ( n = ( j + 1 ) -> ( abs ` ( G ` n ) ) = ( abs ` ( G ` ( j + 1 ) ) ) ) | 
						
							| 24 | 23 | breq1d |  |-  ( n = ( j + 1 ) -> ( ( abs ` ( G ` n ) ) < x <-> ( abs ` ( G ` ( j + 1 ) ) ) < x ) ) | 
						
							| 25 | 24 | rspcv |  |-  ( ( j + 1 ) e. ( ZZ>= ` j ) -> ( A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x -> ( abs ` ( G ` ( j + 1 ) ) ) < x ) ) | 
						
							| 26 | 21 22 25 | 3syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> ( A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x -> ( abs ` ( G ` ( j + 1 ) ) ) < x ) ) | 
						
							| 27 |  | eluzelz |  |-  ( n e. ( ZZ>= ` j ) -> n e. ZZ ) | 
						
							| 28 | 27 | ad2antll |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> n e. ZZ ) | 
						
							| 29 | 28 | zcnd |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> n e. CC ) | 
						
							| 30 | 19 1 | eleq2s |  |-  ( j e. Z -> j e. ZZ ) | 
						
							| 31 | 30 | ad2antrl |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> j e. ZZ ) | 
						
							| 32 | 31 | zcnd |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> j e. CC ) | 
						
							| 33 | 29 32 | subcld |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( n - j ) e. CC ) | 
						
							| 34 |  | 2cnd |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 2 e. CC ) | 
						
							| 35 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 36 | 35 | a1i |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 2 =/= 0 ) | 
						
							| 37 | 33 34 36 | divcan2d |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( 2 x. ( ( n - j ) / 2 ) ) = ( n - j ) ) | 
						
							| 38 | 37 | oveq2d |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) = ( j + ( n - j ) ) ) | 
						
							| 39 | 32 29 | pncan3d |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( j + ( n - j ) ) = n ) | 
						
							| 40 | 38 39 | eqtr2d |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> n = ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> n = ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) | 
						
							| 42 | 41 | fveq2d |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ( seq M ( + , F ) ` n ) = ( seq M ( + , F ) ` ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) ) | 
						
							| 43 | 42 | fvoveq1d |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) = ( abs ` ( ( seq M ( + , F ) ` ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) - ( seq M ( + , F ) ` j ) ) ) ) | 
						
							| 44 |  | simpll |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ph ) | 
						
							| 45 |  | simpl |  |-  ( ( j e. Z /\ n e. ( ZZ>= ` j ) ) -> j e. Z ) | 
						
							| 46 | 45 | ad2antlr |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> j e. Z ) | 
						
							| 47 |  | simpr |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ( ( n - j ) / 2 ) e. ZZ ) | 
						
							| 48 | 28 31 | zsubcld |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( n - j ) e. ZZ ) | 
						
							| 49 | 48 | zred |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( n - j ) e. RR ) | 
						
							| 50 |  | 2rp |  |-  2 e. RR+ | 
						
							| 51 | 50 | a1i |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 2 e. RR+ ) | 
						
							| 52 |  | eluzle |  |-  ( n e. ( ZZ>= ` j ) -> j <_ n ) | 
						
							| 53 | 52 | ad2antll |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> j <_ n ) | 
						
							| 54 | 28 | zred |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> n e. RR ) | 
						
							| 55 | 31 | zred |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> j e. RR ) | 
						
							| 56 | 54 55 | subge0d |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( 0 <_ ( n - j ) <-> j <_ n ) ) | 
						
							| 57 | 53 56 | mpbird |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 0 <_ ( n - j ) ) | 
						
							| 58 | 49 51 57 | divge0d |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 0 <_ ( ( n - j ) / 2 ) ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> 0 <_ ( ( n - j ) / 2 ) ) | 
						
							| 60 |  | elnn0z |  |-  ( ( ( n - j ) / 2 ) e. NN0 <-> ( ( ( n - j ) / 2 ) e. ZZ /\ 0 <_ ( ( n - j ) / 2 ) ) ) | 
						
							| 61 | 47 59 60 | sylanbrc |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ( ( n - j ) / 2 ) e. NN0 ) | 
						
							| 62 | 1 2 3 4 5 6 | iseraltlem3 |  |-  ( ( ph /\ j e. Z /\ ( ( n - j ) / 2 ) e. NN0 ) -> ( ( abs ` ( ( seq M ( + , F ) ` ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) /\ ( abs ` ( ( seq M ( + , F ) ` ( ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) + 1 ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) ) | 
						
							| 63 | 62 | simpld |  |-  ( ( ph /\ j e. Z /\ ( ( n - j ) / 2 ) e. NN0 ) -> ( abs ` ( ( seq M ( + , F ) ` ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) | 
						
							| 64 | 44 46 61 63 | syl3anc |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ( abs ` ( ( seq M ( + , F ) ` ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) | 
						
							| 65 | 43 64 | eqbrtrd |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) | 
						
							| 66 |  | 2div2e1 |  |-  ( 2 / 2 ) = 1 | 
						
							| 67 | 66 | oveq2i |  |-  ( ( ( ( n - j ) + 1 ) / 2 ) - ( 2 / 2 ) ) = ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) | 
						
							| 68 |  | peano2cn |  |-  ( ( n - j ) e. CC -> ( ( n - j ) + 1 ) e. CC ) | 
						
							| 69 | 33 68 | syl |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( n - j ) + 1 ) e. CC ) | 
						
							| 70 | 69 34 34 36 | divsubdird |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( ( n - j ) + 1 ) - 2 ) / 2 ) = ( ( ( ( n - j ) + 1 ) / 2 ) - ( 2 / 2 ) ) ) | 
						
							| 71 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 72 | 71 | oveq2i |  |-  ( ( ( n - j ) + 1 ) - 2 ) = ( ( ( n - j ) + 1 ) - ( 1 + 1 ) ) | 
						
							| 73 |  | ax-1cn |  |-  1 e. CC | 
						
							| 74 | 73 | a1i |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 1 e. CC ) | 
						
							| 75 | 33 74 74 | pnpcan2d |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( n - j ) + 1 ) - ( 1 + 1 ) ) = ( ( n - j ) - 1 ) ) | 
						
							| 76 | 72 75 | eqtrid |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( n - j ) + 1 ) - 2 ) = ( ( n - j ) - 1 ) ) | 
						
							| 77 | 76 | oveq1d |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( ( n - j ) + 1 ) - 2 ) / 2 ) = ( ( ( n - j ) - 1 ) / 2 ) ) | 
						
							| 78 | 70 77 | eqtr3d |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( ( n - j ) + 1 ) / 2 ) - ( 2 / 2 ) ) = ( ( ( n - j ) - 1 ) / 2 ) ) | 
						
							| 79 | 67 78 | eqtr3id |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) = ( ( ( n - j ) - 1 ) / 2 ) ) | 
						
							| 80 | 79 | oveq2d |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) = ( 2 x. ( ( ( n - j ) - 1 ) / 2 ) ) ) | 
						
							| 81 |  | subcl |  |-  ( ( ( n - j ) e. CC /\ 1 e. CC ) -> ( ( n - j ) - 1 ) e. CC ) | 
						
							| 82 | 33 73 81 | sylancl |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( n - j ) - 1 ) e. CC ) | 
						
							| 83 | 82 34 36 | divcan2d |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( 2 x. ( ( ( n - j ) - 1 ) / 2 ) ) = ( ( n - j ) - 1 ) ) | 
						
							| 84 | 29 32 74 | sub32d |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( n - j ) - 1 ) = ( ( n - 1 ) - j ) ) | 
						
							| 85 | 80 83 84 | 3eqtrd |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) = ( ( n - 1 ) - j ) ) | 
						
							| 86 | 85 | oveq2d |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) = ( j + ( ( n - 1 ) - j ) ) ) | 
						
							| 87 |  | subcl |  |-  ( ( n e. CC /\ 1 e. CC ) -> ( n - 1 ) e. CC ) | 
						
							| 88 | 29 73 87 | sylancl |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( n - 1 ) e. CC ) | 
						
							| 89 | 32 88 | pncan3d |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( j + ( ( n - 1 ) - j ) ) = ( n - 1 ) ) | 
						
							| 90 | 86 89 | eqtrd |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) = ( n - 1 ) ) | 
						
							| 91 | 90 | oveq1d |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) = ( ( n - 1 ) + 1 ) ) | 
						
							| 92 |  | npcan |  |-  ( ( n e. CC /\ 1 e. CC ) -> ( ( n - 1 ) + 1 ) = n ) | 
						
							| 93 | 29 73 92 | sylancl |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( n - 1 ) + 1 ) = n ) | 
						
							| 94 | 91 93 | eqtr2d |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> n = ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) | 
						
							| 95 | 94 | adantr |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> n = ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) | 
						
							| 96 | 95 | fveq2d |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( seq M ( + , F ) ` n ) = ( seq M ( + , F ) ` ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) ) | 
						
							| 97 | 96 | fvoveq1d |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) = ( abs ` ( ( seq M ( + , F ) ` ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) - ( seq M ( + , F ) ` j ) ) ) ) | 
						
							| 98 |  | simpll |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ph ) | 
						
							| 99 | 45 | ad2antlr |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> j e. Z ) | 
						
							| 100 |  | simpr |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) | 
						
							| 101 |  | uznn0sub |  |-  ( n e. ( ZZ>= ` j ) -> ( n - j ) e. NN0 ) | 
						
							| 102 | 101 | ad2antll |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( n - j ) e. NN0 ) | 
						
							| 103 |  | nn0p1nn |  |-  ( ( n - j ) e. NN0 -> ( ( n - j ) + 1 ) e. NN ) | 
						
							| 104 | 102 103 | syl |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( n - j ) + 1 ) e. NN ) | 
						
							| 105 | 104 | nnrpd |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( n - j ) + 1 ) e. RR+ ) | 
						
							| 106 | 105 | rphalfcld |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( n - j ) + 1 ) / 2 ) e. RR+ ) | 
						
							| 107 | 106 | rpgt0d |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 0 < ( ( ( n - j ) + 1 ) / 2 ) ) | 
						
							| 108 | 107 | adantr |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> 0 < ( ( ( n - j ) + 1 ) / 2 ) ) | 
						
							| 109 |  | elnnz |  |-  ( ( ( ( n - j ) + 1 ) / 2 ) e. NN <-> ( ( ( ( n - j ) + 1 ) / 2 ) e. ZZ /\ 0 < ( ( ( n - j ) + 1 ) / 2 ) ) ) | 
						
							| 110 | 100 108 109 | sylanbrc |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( ( ( n - j ) + 1 ) / 2 ) e. NN ) | 
						
							| 111 |  | nnm1nn0 |  |-  ( ( ( ( n - j ) + 1 ) / 2 ) e. NN -> ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) e. NN0 ) | 
						
							| 112 | 110 111 | syl |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) e. NN0 ) | 
						
							| 113 | 1 2 3 4 5 6 | iseraltlem3 |  |-  ( ( ph /\ j e. Z /\ ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) e. NN0 ) -> ( ( abs ` ( ( seq M ( + , F ) ` ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) /\ ( abs ` ( ( seq M ( + , F ) ` ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) ) | 
						
							| 114 | 113 | simprd |  |-  ( ( ph /\ j e. Z /\ ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) e. NN0 ) -> ( abs ` ( ( seq M ( + , F ) ` ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) | 
						
							| 115 | 98 99 112 114 | syl3anc |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( abs ` ( ( seq M ( + , F ) ` ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) | 
						
							| 116 | 97 115 | eqbrtrd |  |-  ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) | 
						
							| 117 |  | zeo |  |-  ( ( n - j ) e. ZZ -> ( ( ( n - j ) / 2 ) e. ZZ \/ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 118 | 48 117 | syl |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( n - j ) / 2 ) e. ZZ \/ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 119 | 65 116 118 | mpjaodan |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) | 
						
							| 120 | 1 | peano2uzs |  |-  ( j e. Z -> ( j + 1 ) e. Z ) | 
						
							| 121 | 120 | adantr |  |-  ( ( j e. Z /\ n e. ( ZZ>= ` j ) ) -> ( j + 1 ) e. Z ) | 
						
							| 122 |  | ffvelcdm |  |-  ( ( G : Z --> RR /\ ( j + 1 ) e. Z ) -> ( G ` ( j + 1 ) ) e. RR ) | 
						
							| 123 | 3 121 122 | syl2an |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( G ` ( j + 1 ) ) e. RR ) | 
						
							| 124 | 1 2 3 4 5 | iseraltlem1 |  |-  ( ( ph /\ ( j + 1 ) e. Z ) -> 0 <_ ( G ` ( j + 1 ) ) ) | 
						
							| 125 | 121 124 | sylan2 |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 0 <_ ( G ` ( j + 1 ) ) ) | 
						
							| 126 | 123 125 | absidd |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( G ` ( j + 1 ) ) ) = ( G ` ( j + 1 ) ) ) | 
						
							| 127 | 119 126 | breqtrrd |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( abs ` ( G ` ( j + 1 ) ) ) ) | 
						
							| 128 | 127 | adantlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( abs ` ( G ` ( j + 1 ) ) ) ) | 
						
							| 129 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 130 | 129 | a1i |  |-  ( ( ph /\ k e. Z ) -> -u 1 e. RR ) | 
						
							| 131 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 132 | 131 | a1i |  |-  ( ( ph /\ k e. Z ) -> -u 1 =/= 0 ) | 
						
							| 133 |  | eluzelz |  |-  ( k e. ( ZZ>= ` M ) -> k e. ZZ ) | 
						
							| 134 | 133 1 | eleq2s |  |-  ( k e. Z -> k e. ZZ ) | 
						
							| 135 | 134 | adantl |  |-  ( ( ph /\ k e. Z ) -> k e. ZZ ) | 
						
							| 136 | 130 132 135 | reexpclzd |  |-  ( ( ph /\ k e. Z ) -> ( -u 1 ^ k ) e. RR ) | 
						
							| 137 | 3 | ffvelcdmda |  |-  ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) | 
						
							| 138 | 136 137 | remulcld |  |-  ( ( ph /\ k e. Z ) -> ( ( -u 1 ^ k ) x. ( G ` k ) ) e. RR ) | 
						
							| 139 | 6 138 | eqeltrd |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) | 
						
							| 140 | 1 2 139 | serfre |  |-  ( ph -> seq M ( + , F ) : Z --> RR ) | 
						
							| 141 | 1 | uztrn2 |  |-  ( ( j e. Z /\ n e. ( ZZ>= ` j ) ) -> n e. Z ) | 
						
							| 142 |  | ffvelcdm |  |-  ( ( seq M ( + , F ) : Z --> RR /\ n e. Z ) -> ( seq M ( + , F ) ` n ) e. RR ) | 
						
							| 143 | 140 141 142 | syl2an |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( seq M ( + , F ) ` n ) e. RR ) | 
						
							| 144 |  | ffvelcdm |  |-  ( ( seq M ( + , F ) : Z --> RR /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. RR ) | 
						
							| 145 | 140 45 144 | syl2an |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( seq M ( + , F ) ` j ) e. RR ) | 
						
							| 146 | 143 145 | resubcld |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) e. RR ) | 
						
							| 147 | 146 | recnd |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) e. CC ) | 
						
							| 148 | 147 | abscld |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) e. RR ) | 
						
							| 149 | 148 | adantlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) e. RR ) | 
						
							| 150 | 126 123 | eqeltrd |  |-  ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( G ` ( j + 1 ) ) ) e. RR ) | 
						
							| 151 | 150 | adantlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( G ` ( j + 1 ) ) ) e. RR ) | 
						
							| 152 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 153 | 152 | ad2antlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> x e. RR ) | 
						
							| 154 |  | lelttr |  |-  ( ( ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) e. RR /\ ( abs ` ( G ` ( j + 1 ) ) ) e. RR /\ x e. RR ) -> ( ( ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( abs ` ( G ` ( j + 1 ) ) ) /\ ( abs ` ( G ` ( j + 1 ) ) ) < x ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) | 
						
							| 155 | 149 151 153 154 | syl3anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( abs ` ( G ` ( j + 1 ) ) ) /\ ( abs ` ( G ` ( j + 1 ) ) ) < x ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) | 
						
							| 156 | 128 155 | mpand |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( G ` ( j + 1 ) ) ) < x -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) | 
						
							| 157 | 140 | adantr |  |-  ( ( ph /\ x e. RR+ ) -> seq M ( + , F ) : Z --> RR ) | 
						
							| 158 | 157 141 142 | syl2an |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( seq M ( + , F ) ` n ) e. RR ) | 
						
							| 159 | 156 158 | jctild |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( G ` ( j + 1 ) ) ) < x -> ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) | 
						
							| 160 | 159 | anassrs |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ n e. ( ZZ>= ` j ) ) -> ( ( abs ` ( G ` ( j + 1 ) ) ) < x -> ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) | 
						
							| 161 | 160 | ralrimdva |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> ( ( abs ` ( G ` ( j + 1 ) ) ) < x -> A. n e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) | 
						
							| 162 | 26 161 | syld |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> ( A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x -> A. n e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) | 
						
							| 163 | 162 | reximdva |  |-  ( ( ph /\ x e. RR+ ) -> ( E. j e. Z A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x -> E. j e. Z A. n e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) | 
						
							| 164 | 163 | ralimdva |  |-  ( ph -> ( A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x -> A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) | 
						
							| 165 | 16 164 | mpd |  |-  ( ph -> A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) | 
						
							| 166 | 1 8 165 | caurcvg2 |  |-  ( ph -> seq M ( + , F ) e. dom ~~> ) |