Step |
Hyp |
Ref |
Expression |
1 |
|
iseralt.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
iseralt.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
iseralt.3 |
|- ( ph -> G : Z --> RR ) |
4 |
|
iseralt.4 |
|- ( ( ph /\ k e. Z ) -> ( G ` ( k + 1 ) ) <_ ( G ` k ) ) |
5 |
|
iseralt.5 |
|- ( ph -> G ~~> 0 ) |
6 |
|
iseralt.6 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) ) |
7 |
|
seqex |
|- seq M ( + , F ) e. _V |
8 |
7
|
a1i |
|- ( ph -> seq M ( + , F ) e. _V ) |
9 |
|
climrel |
|- Rel ~~> |
10 |
9
|
brrelex1i |
|- ( G ~~> 0 -> G e. _V ) |
11 |
5 10
|
syl |
|- ( ph -> G e. _V ) |
12 |
|
eqidd |
|- ( ( ph /\ n e. Z ) -> ( G ` n ) = ( G ` n ) ) |
13 |
3
|
ffvelrnda |
|- ( ( ph /\ n e. Z ) -> ( G ` n ) e. RR ) |
14 |
13
|
recnd |
|- ( ( ph /\ n e. Z ) -> ( G ` n ) e. CC ) |
15 |
1 2 11 12 14
|
clim0c |
|- ( ph -> ( G ~~> 0 <-> A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x ) ) |
16 |
5 15
|
mpbid |
|- ( ph -> A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x ) |
17 |
|
simpr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> j e. Z ) |
18 |
17 1
|
eleqtrdi |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
19 |
|
eluzelz |
|- ( j e. ( ZZ>= ` M ) -> j e. ZZ ) |
20 |
|
uzid |
|- ( j e. ZZ -> j e. ( ZZ>= ` j ) ) |
21 |
18 19 20
|
3syl |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> j e. ( ZZ>= ` j ) ) |
22 |
|
peano2uz |
|- ( j e. ( ZZ>= ` j ) -> ( j + 1 ) e. ( ZZ>= ` j ) ) |
23 |
|
2fveq3 |
|- ( n = ( j + 1 ) -> ( abs ` ( G ` n ) ) = ( abs ` ( G ` ( j + 1 ) ) ) ) |
24 |
23
|
breq1d |
|- ( n = ( j + 1 ) -> ( ( abs ` ( G ` n ) ) < x <-> ( abs ` ( G ` ( j + 1 ) ) ) < x ) ) |
25 |
24
|
rspcv |
|- ( ( j + 1 ) e. ( ZZ>= ` j ) -> ( A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x -> ( abs ` ( G ` ( j + 1 ) ) ) < x ) ) |
26 |
21 22 25
|
3syl |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> ( A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x -> ( abs ` ( G ` ( j + 1 ) ) ) < x ) ) |
27 |
|
eluzelz |
|- ( n e. ( ZZ>= ` j ) -> n e. ZZ ) |
28 |
27
|
ad2antll |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> n e. ZZ ) |
29 |
28
|
zcnd |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> n e. CC ) |
30 |
19 1
|
eleq2s |
|- ( j e. Z -> j e. ZZ ) |
31 |
30
|
ad2antrl |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> j e. ZZ ) |
32 |
31
|
zcnd |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> j e. CC ) |
33 |
29 32
|
subcld |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( n - j ) e. CC ) |
34 |
|
2cnd |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 2 e. CC ) |
35 |
|
2ne0 |
|- 2 =/= 0 |
36 |
35
|
a1i |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 2 =/= 0 ) |
37 |
33 34 36
|
divcan2d |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( 2 x. ( ( n - j ) / 2 ) ) = ( n - j ) ) |
38 |
37
|
oveq2d |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) = ( j + ( n - j ) ) ) |
39 |
32 29
|
pncan3d |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( j + ( n - j ) ) = n ) |
40 |
38 39
|
eqtr2d |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> n = ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) |
41 |
40
|
adantr |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> n = ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) |
42 |
41
|
fveq2d |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ( seq M ( + , F ) ` n ) = ( seq M ( + , F ) ` ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) ) |
43 |
42
|
fvoveq1d |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) = ( abs ` ( ( seq M ( + , F ) ` ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) - ( seq M ( + , F ) ` j ) ) ) ) |
44 |
|
simpll |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ph ) |
45 |
|
simpl |
|- ( ( j e. Z /\ n e. ( ZZ>= ` j ) ) -> j e. Z ) |
46 |
45
|
ad2antlr |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> j e. Z ) |
47 |
|
simpr |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ( ( n - j ) / 2 ) e. ZZ ) |
48 |
28 31
|
zsubcld |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( n - j ) e. ZZ ) |
49 |
48
|
zred |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( n - j ) e. RR ) |
50 |
|
2rp |
|- 2 e. RR+ |
51 |
50
|
a1i |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 2 e. RR+ ) |
52 |
|
eluzle |
|- ( n e. ( ZZ>= ` j ) -> j <_ n ) |
53 |
52
|
ad2antll |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> j <_ n ) |
54 |
28
|
zred |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> n e. RR ) |
55 |
31
|
zred |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> j e. RR ) |
56 |
54 55
|
subge0d |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( 0 <_ ( n - j ) <-> j <_ n ) ) |
57 |
53 56
|
mpbird |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 0 <_ ( n - j ) ) |
58 |
49 51 57
|
divge0d |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 0 <_ ( ( n - j ) / 2 ) ) |
59 |
58
|
adantr |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> 0 <_ ( ( n - j ) / 2 ) ) |
60 |
|
elnn0z |
|- ( ( ( n - j ) / 2 ) e. NN0 <-> ( ( ( n - j ) / 2 ) e. ZZ /\ 0 <_ ( ( n - j ) / 2 ) ) ) |
61 |
47 59 60
|
sylanbrc |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ( ( n - j ) / 2 ) e. NN0 ) |
62 |
1 2 3 4 5 6
|
iseraltlem3 |
|- ( ( ph /\ j e. Z /\ ( ( n - j ) / 2 ) e. NN0 ) -> ( ( abs ` ( ( seq M ( + , F ) ` ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) /\ ( abs ` ( ( seq M ( + , F ) ` ( ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) + 1 ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) ) |
63 |
62
|
simpld |
|- ( ( ph /\ j e. Z /\ ( ( n - j ) / 2 ) e. NN0 ) -> ( abs ` ( ( seq M ( + , F ) ` ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) |
64 |
44 46 61 63
|
syl3anc |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ( abs ` ( ( seq M ( + , F ) ` ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) |
65 |
43 64
|
eqbrtrd |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) |
66 |
|
2div2e1 |
|- ( 2 / 2 ) = 1 |
67 |
66
|
oveq2i |
|- ( ( ( ( n - j ) + 1 ) / 2 ) - ( 2 / 2 ) ) = ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) |
68 |
|
peano2cn |
|- ( ( n - j ) e. CC -> ( ( n - j ) + 1 ) e. CC ) |
69 |
33 68
|
syl |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( n - j ) + 1 ) e. CC ) |
70 |
69 34 34 36
|
divsubdird |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( ( n - j ) + 1 ) - 2 ) / 2 ) = ( ( ( ( n - j ) + 1 ) / 2 ) - ( 2 / 2 ) ) ) |
71 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
72 |
71
|
oveq2i |
|- ( ( ( n - j ) + 1 ) - 2 ) = ( ( ( n - j ) + 1 ) - ( 1 + 1 ) ) |
73 |
|
ax-1cn |
|- 1 e. CC |
74 |
73
|
a1i |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 1 e. CC ) |
75 |
33 74 74
|
pnpcan2d |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( n - j ) + 1 ) - ( 1 + 1 ) ) = ( ( n - j ) - 1 ) ) |
76 |
72 75
|
eqtrid |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( n - j ) + 1 ) - 2 ) = ( ( n - j ) - 1 ) ) |
77 |
76
|
oveq1d |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( ( n - j ) + 1 ) - 2 ) / 2 ) = ( ( ( n - j ) - 1 ) / 2 ) ) |
78 |
70 77
|
eqtr3d |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( ( n - j ) + 1 ) / 2 ) - ( 2 / 2 ) ) = ( ( ( n - j ) - 1 ) / 2 ) ) |
79 |
67 78
|
eqtr3id |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) = ( ( ( n - j ) - 1 ) / 2 ) ) |
80 |
79
|
oveq2d |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) = ( 2 x. ( ( ( n - j ) - 1 ) / 2 ) ) ) |
81 |
|
subcl |
|- ( ( ( n - j ) e. CC /\ 1 e. CC ) -> ( ( n - j ) - 1 ) e. CC ) |
82 |
33 73 81
|
sylancl |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( n - j ) - 1 ) e. CC ) |
83 |
82 34 36
|
divcan2d |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( 2 x. ( ( ( n - j ) - 1 ) / 2 ) ) = ( ( n - j ) - 1 ) ) |
84 |
29 32 74
|
sub32d |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( n - j ) - 1 ) = ( ( n - 1 ) - j ) ) |
85 |
80 83 84
|
3eqtrd |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) = ( ( n - 1 ) - j ) ) |
86 |
85
|
oveq2d |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) = ( j + ( ( n - 1 ) - j ) ) ) |
87 |
|
subcl |
|- ( ( n e. CC /\ 1 e. CC ) -> ( n - 1 ) e. CC ) |
88 |
29 73 87
|
sylancl |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( n - 1 ) e. CC ) |
89 |
32 88
|
pncan3d |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( j + ( ( n - 1 ) - j ) ) = ( n - 1 ) ) |
90 |
86 89
|
eqtrd |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) = ( n - 1 ) ) |
91 |
90
|
oveq1d |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) = ( ( n - 1 ) + 1 ) ) |
92 |
|
npcan |
|- ( ( n e. CC /\ 1 e. CC ) -> ( ( n - 1 ) + 1 ) = n ) |
93 |
29 73 92
|
sylancl |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( n - 1 ) + 1 ) = n ) |
94 |
91 93
|
eqtr2d |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> n = ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) |
95 |
94
|
adantr |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> n = ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) |
96 |
95
|
fveq2d |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( seq M ( + , F ) ` n ) = ( seq M ( + , F ) ` ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) ) |
97 |
96
|
fvoveq1d |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) = ( abs ` ( ( seq M ( + , F ) ` ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) - ( seq M ( + , F ) ` j ) ) ) ) |
98 |
|
simpll |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ph ) |
99 |
45
|
ad2antlr |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> j e. Z ) |
100 |
|
simpr |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) |
101 |
|
uznn0sub |
|- ( n e. ( ZZ>= ` j ) -> ( n - j ) e. NN0 ) |
102 |
101
|
ad2antll |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( n - j ) e. NN0 ) |
103 |
|
nn0p1nn |
|- ( ( n - j ) e. NN0 -> ( ( n - j ) + 1 ) e. NN ) |
104 |
102 103
|
syl |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( n - j ) + 1 ) e. NN ) |
105 |
104
|
nnrpd |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( n - j ) + 1 ) e. RR+ ) |
106 |
105
|
rphalfcld |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( n - j ) + 1 ) / 2 ) e. RR+ ) |
107 |
106
|
rpgt0d |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 0 < ( ( ( n - j ) + 1 ) / 2 ) ) |
108 |
107
|
adantr |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> 0 < ( ( ( n - j ) + 1 ) / 2 ) ) |
109 |
|
elnnz |
|- ( ( ( ( n - j ) + 1 ) / 2 ) e. NN <-> ( ( ( ( n - j ) + 1 ) / 2 ) e. ZZ /\ 0 < ( ( ( n - j ) + 1 ) / 2 ) ) ) |
110 |
100 108 109
|
sylanbrc |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( ( ( n - j ) + 1 ) / 2 ) e. NN ) |
111 |
|
nnm1nn0 |
|- ( ( ( ( n - j ) + 1 ) / 2 ) e. NN -> ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) e. NN0 ) |
112 |
110 111
|
syl |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) e. NN0 ) |
113 |
1 2 3 4 5 6
|
iseraltlem3 |
|- ( ( ph /\ j e. Z /\ ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) e. NN0 ) -> ( ( abs ` ( ( seq M ( + , F ) ` ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) /\ ( abs ` ( ( seq M ( + , F ) ` ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) ) |
114 |
113
|
simprd |
|- ( ( ph /\ j e. Z /\ ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) e. NN0 ) -> ( abs ` ( ( seq M ( + , F ) ` ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) |
115 |
98 99 112 114
|
syl3anc |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( abs ` ( ( seq M ( + , F ) ` ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) |
116 |
97 115
|
eqbrtrd |
|- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) |
117 |
|
zeo |
|- ( ( n - j ) e. ZZ -> ( ( ( n - j ) / 2 ) e. ZZ \/ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) ) |
118 |
48 117
|
syl |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( n - j ) / 2 ) e. ZZ \/ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) ) |
119 |
65 116 118
|
mpjaodan |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) |
120 |
1
|
peano2uzs |
|- ( j e. Z -> ( j + 1 ) e. Z ) |
121 |
120
|
adantr |
|- ( ( j e. Z /\ n e. ( ZZ>= ` j ) ) -> ( j + 1 ) e. Z ) |
122 |
|
ffvelrn |
|- ( ( G : Z --> RR /\ ( j + 1 ) e. Z ) -> ( G ` ( j + 1 ) ) e. RR ) |
123 |
3 121 122
|
syl2an |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( G ` ( j + 1 ) ) e. RR ) |
124 |
1 2 3 4 5
|
iseraltlem1 |
|- ( ( ph /\ ( j + 1 ) e. Z ) -> 0 <_ ( G ` ( j + 1 ) ) ) |
125 |
121 124
|
sylan2 |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 0 <_ ( G ` ( j + 1 ) ) ) |
126 |
123 125
|
absidd |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( G ` ( j + 1 ) ) ) = ( G ` ( j + 1 ) ) ) |
127 |
119 126
|
breqtrrd |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( abs ` ( G ` ( j + 1 ) ) ) ) |
128 |
127
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( abs ` ( G ` ( j + 1 ) ) ) ) |
129 |
|
neg1rr |
|- -u 1 e. RR |
130 |
129
|
a1i |
|- ( ( ph /\ k e. Z ) -> -u 1 e. RR ) |
131 |
|
neg1ne0 |
|- -u 1 =/= 0 |
132 |
131
|
a1i |
|- ( ( ph /\ k e. Z ) -> -u 1 =/= 0 ) |
133 |
|
eluzelz |
|- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
134 |
133 1
|
eleq2s |
|- ( k e. Z -> k e. ZZ ) |
135 |
134
|
adantl |
|- ( ( ph /\ k e. Z ) -> k e. ZZ ) |
136 |
130 132 135
|
reexpclzd |
|- ( ( ph /\ k e. Z ) -> ( -u 1 ^ k ) e. RR ) |
137 |
3
|
ffvelrnda |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
138 |
136 137
|
remulcld |
|- ( ( ph /\ k e. Z ) -> ( ( -u 1 ^ k ) x. ( G ` k ) ) e. RR ) |
139 |
6 138
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
140 |
1 2 139
|
serfre |
|- ( ph -> seq M ( + , F ) : Z --> RR ) |
141 |
1
|
uztrn2 |
|- ( ( j e. Z /\ n e. ( ZZ>= ` j ) ) -> n e. Z ) |
142 |
|
ffvelrn |
|- ( ( seq M ( + , F ) : Z --> RR /\ n e. Z ) -> ( seq M ( + , F ) ` n ) e. RR ) |
143 |
140 141 142
|
syl2an |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( seq M ( + , F ) ` n ) e. RR ) |
144 |
|
ffvelrn |
|- ( ( seq M ( + , F ) : Z --> RR /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. RR ) |
145 |
140 45 144
|
syl2an |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( seq M ( + , F ) ` j ) e. RR ) |
146 |
143 145
|
resubcld |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) e. RR ) |
147 |
146
|
recnd |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) e. CC ) |
148 |
147
|
abscld |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) e. RR ) |
149 |
148
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) e. RR ) |
150 |
126 123
|
eqeltrd |
|- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( G ` ( j + 1 ) ) ) e. RR ) |
151 |
150
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( G ` ( j + 1 ) ) ) e. RR ) |
152 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
153 |
152
|
ad2antlr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> x e. RR ) |
154 |
|
lelttr |
|- ( ( ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) e. RR /\ ( abs ` ( G ` ( j + 1 ) ) ) e. RR /\ x e. RR ) -> ( ( ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( abs ` ( G ` ( j + 1 ) ) ) /\ ( abs ` ( G ` ( j + 1 ) ) ) < x ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) |
155 |
149 151 153 154
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( abs ` ( G ` ( j + 1 ) ) ) /\ ( abs ` ( G ` ( j + 1 ) ) ) < x ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) |
156 |
128 155
|
mpand |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( G ` ( j + 1 ) ) ) < x -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) |
157 |
140
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> seq M ( + , F ) : Z --> RR ) |
158 |
157 141 142
|
syl2an |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( seq M ( + , F ) ` n ) e. RR ) |
159 |
156 158
|
jctild |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( G ` ( j + 1 ) ) ) < x -> ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) |
160 |
159
|
anassrs |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ n e. ( ZZ>= ` j ) ) -> ( ( abs ` ( G ` ( j + 1 ) ) ) < x -> ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) |
161 |
160
|
ralrimdva |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> ( ( abs ` ( G ` ( j + 1 ) ) ) < x -> A. n e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) |
162 |
26 161
|
syld |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> ( A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x -> A. n e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) |
163 |
162
|
reximdva |
|- ( ( ph /\ x e. RR+ ) -> ( E. j e. Z A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x -> E. j e. Z A. n e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) |
164 |
163
|
ralimdva |
|- ( ph -> ( A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x -> A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) |
165 |
16 164
|
mpd |
|- ( ph -> A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) |
166 |
1 8 165
|
caurcvg2 |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |