Step |
Hyp |
Ref |
Expression |
1 |
|
iseralt.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
iseralt.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
iseralt.3 |
|- ( ph -> G : Z --> RR ) |
4 |
|
iseralt.4 |
|- ( ( ph /\ k e. Z ) -> ( G ` ( k + 1 ) ) <_ ( G ` k ) ) |
5 |
|
iseralt.5 |
|- ( ph -> G ~~> 0 ) |
6 |
|
eqid |
|- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
7 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
8 |
7 1
|
eleq2s |
|- ( N e. Z -> N e. ZZ ) |
9 |
8
|
adantl |
|- ( ( ph /\ N e. Z ) -> N e. ZZ ) |
10 |
5
|
adantr |
|- ( ( ph /\ N e. Z ) -> G ~~> 0 ) |
11 |
3
|
ffvelrnda |
|- ( ( ph /\ N e. Z ) -> ( G ` N ) e. RR ) |
12 |
11
|
recnd |
|- ( ( ph /\ N e. Z ) -> ( G ` N ) e. CC ) |
13 |
|
1z |
|- 1 e. ZZ |
14 |
|
uzssz |
|- ( ZZ>= ` 1 ) C_ ZZ |
15 |
|
zex |
|- ZZ e. _V |
16 |
14 15
|
climconst2 |
|- ( ( ( G ` N ) e. CC /\ 1 e. ZZ ) -> ( ZZ X. { ( G ` N ) } ) ~~> ( G ` N ) ) |
17 |
12 13 16
|
sylancl |
|- ( ( ph /\ N e. Z ) -> ( ZZ X. { ( G ` N ) } ) ~~> ( G ` N ) ) |
18 |
3
|
ad2antrr |
|- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> G : Z --> RR ) |
19 |
1
|
uztrn2 |
|- ( ( N e. Z /\ n e. ( ZZ>= ` N ) ) -> n e. Z ) |
20 |
19
|
adantll |
|- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> n e. Z ) |
21 |
18 20
|
ffvelrnd |
|- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> ( G ` n ) e. RR ) |
22 |
|
eluzelz |
|- ( n e. ( ZZ>= ` N ) -> n e. ZZ ) |
23 |
22
|
adantl |
|- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> n e. ZZ ) |
24 |
|
fvex |
|- ( G ` N ) e. _V |
25 |
24
|
fvconst2 |
|- ( n e. ZZ -> ( ( ZZ X. { ( G ` N ) } ) ` n ) = ( G ` N ) ) |
26 |
23 25
|
syl |
|- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> ( ( ZZ X. { ( G ` N ) } ) ` n ) = ( G ` N ) ) |
27 |
11
|
adantr |
|- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> ( G ` N ) e. RR ) |
28 |
26 27
|
eqeltrd |
|- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> ( ( ZZ X. { ( G ` N ) } ) ` n ) e. RR ) |
29 |
|
simpr |
|- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> n e. ( ZZ>= ` N ) ) |
30 |
18
|
adantr |
|- ( ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) /\ k e. ( N ... n ) ) -> G : Z --> RR ) |
31 |
|
simplr |
|- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> N e. Z ) |
32 |
|
elfzuz |
|- ( k e. ( N ... n ) -> k e. ( ZZ>= ` N ) ) |
33 |
1
|
uztrn2 |
|- ( ( N e. Z /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
34 |
31 32 33
|
syl2an |
|- ( ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) /\ k e. ( N ... n ) ) -> k e. Z ) |
35 |
30 34
|
ffvelrnd |
|- ( ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) /\ k e. ( N ... n ) ) -> ( G ` k ) e. RR ) |
36 |
|
simpl |
|- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> ( ph /\ N e. Z ) ) |
37 |
|
elfzuz |
|- ( k e. ( N ... ( n - 1 ) ) -> k e. ( ZZ>= ` N ) ) |
38 |
33
|
adantll |
|- ( ( ( ph /\ N e. Z ) /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
39 |
4
|
adantlr |
|- ( ( ( ph /\ N e. Z ) /\ k e. Z ) -> ( G ` ( k + 1 ) ) <_ ( G ` k ) ) |
40 |
38 39
|
syldan |
|- ( ( ( ph /\ N e. Z ) /\ k e. ( ZZ>= ` N ) ) -> ( G ` ( k + 1 ) ) <_ ( G ` k ) ) |
41 |
36 37 40
|
syl2an |
|- ( ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) /\ k e. ( N ... ( n - 1 ) ) ) -> ( G ` ( k + 1 ) ) <_ ( G ` k ) ) |
42 |
29 35 41
|
monoord2 |
|- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> ( G ` n ) <_ ( G ` N ) ) |
43 |
42 26
|
breqtrrd |
|- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> ( G ` n ) <_ ( ( ZZ X. { ( G ` N ) } ) ` n ) ) |
44 |
6 9 10 17 21 28 43
|
climle |
|- ( ( ph /\ N e. Z ) -> 0 <_ ( G ` N ) ) |