| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iseralt.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | iseralt.2 |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | iseralt.3 |  |-  ( ph -> G : Z --> RR ) | 
						
							| 4 |  | iseralt.4 |  |-  ( ( ph /\ k e. Z ) -> ( G ` ( k + 1 ) ) <_ ( G ` k ) ) | 
						
							| 5 |  | iseralt.5 |  |-  ( ph -> G ~~> 0 ) | 
						
							| 6 |  | iseralt.6 |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) ) | 
						
							| 7 |  | oveq2 |  |-  ( x = 0 -> ( 2 x. x ) = ( 2 x. 0 ) ) | 
						
							| 8 |  | 2t0e0 |  |-  ( 2 x. 0 ) = 0 | 
						
							| 9 | 7 8 | eqtrdi |  |-  ( x = 0 -> ( 2 x. x ) = 0 ) | 
						
							| 10 | 9 | oveq2d |  |-  ( x = 0 -> ( N + ( 2 x. x ) ) = ( N + 0 ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( x = 0 -> ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) = ( seq M ( + , F ) ` ( N + 0 ) ) ) | 
						
							| 12 | 11 | oveq2d |  |-  ( x = 0 -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) = ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 0 ) ) ) ) | 
						
							| 13 | 12 | breq1d |  |-  ( x = 0 -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) <-> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 0 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) | 
						
							| 14 | 13 | imbi2d |  |-  ( x = 0 -> ( ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) <-> ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 0 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) ) | 
						
							| 15 |  | oveq2 |  |-  ( x = n -> ( 2 x. x ) = ( 2 x. n ) ) | 
						
							| 16 | 15 | oveq2d |  |-  ( x = n -> ( N + ( 2 x. x ) ) = ( N + ( 2 x. n ) ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( x = n -> ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) = ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) | 
						
							| 18 | 17 | oveq2d |  |-  ( x = n -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) = ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) ) | 
						
							| 19 | 18 | breq1d |  |-  ( x = n -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) <-> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) | 
						
							| 20 | 19 | imbi2d |  |-  ( x = n -> ( ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) <-> ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) ) | 
						
							| 21 |  | oveq2 |  |-  ( x = ( n + 1 ) -> ( 2 x. x ) = ( 2 x. ( n + 1 ) ) ) | 
						
							| 22 | 21 | oveq2d |  |-  ( x = ( n + 1 ) -> ( N + ( 2 x. x ) ) = ( N + ( 2 x. ( n + 1 ) ) ) ) | 
						
							| 23 | 22 | fveq2d |  |-  ( x = ( n + 1 ) -> ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) = ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( x = ( n + 1 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) = ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) ) | 
						
							| 25 | 24 | breq1d |  |-  ( x = ( n + 1 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) <-> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) | 
						
							| 26 | 25 | imbi2d |  |-  ( x = ( n + 1 ) -> ( ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) <-> ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) ) | 
						
							| 27 |  | oveq2 |  |-  ( x = K -> ( 2 x. x ) = ( 2 x. K ) ) | 
						
							| 28 | 27 | oveq2d |  |-  ( x = K -> ( N + ( 2 x. x ) ) = ( N + ( 2 x. K ) ) ) | 
						
							| 29 | 28 | fveq2d |  |-  ( x = K -> ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) = ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) | 
						
							| 30 | 29 | oveq2d |  |-  ( x = K -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) = ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) ) | 
						
							| 31 | 30 | breq1d |  |-  ( x = K -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) <-> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) | 
						
							| 32 | 31 | imbi2d |  |-  ( x = K -> ( ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) <-> ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) ) | 
						
							| 33 |  | uzssz |  |-  ( ZZ>= ` M ) C_ ZZ | 
						
							| 34 | 1 33 | eqsstri |  |-  Z C_ ZZ | 
						
							| 35 | 34 | a1i |  |-  ( ph -> Z C_ ZZ ) | 
						
							| 36 | 35 | sselda |  |-  ( ( ph /\ N e. Z ) -> N e. ZZ ) | 
						
							| 37 | 36 | zcnd |  |-  ( ( ph /\ N e. Z ) -> N e. CC ) | 
						
							| 38 | 37 | addridd |  |-  ( ( ph /\ N e. Z ) -> ( N + 0 ) = N ) | 
						
							| 39 | 38 | fveq2d |  |-  ( ( ph /\ N e. Z ) -> ( seq M ( + , F ) ` ( N + 0 ) ) = ( seq M ( + , F ) ` N ) ) | 
						
							| 40 | 39 | oveq2d |  |-  ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 0 ) ) ) = ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) | 
						
							| 41 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 42 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 43 |  | reexpclz |  |-  ( ( -u 1 e. RR /\ -u 1 =/= 0 /\ N e. ZZ ) -> ( -u 1 ^ N ) e. RR ) | 
						
							| 44 | 41 42 36 43 | mp3an12i |  |-  ( ( ph /\ N e. Z ) -> ( -u 1 ^ N ) e. RR ) | 
						
							| 45 | 35 | sselda |  |-  ( ( ph /\ k e. Z ) -> k e. ZZ ) | 
						
							| 46 |  | reexpclz |  |-  ( ( -u 1 e. RR /\ -u 1 =/= 0 /\ k e. ZZ ) -> ( -u 1 ^ k ) e. RR ) | 
						
							| 47 | 41 42 45 46 | mp3an12i |  |-  ( ( ph /\ k e. Z ) -> ( -u 1 ^ k ) e. RR ) | 
						
							| 48 | 3 | ffvelcdmda |  |-  ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) | 
						
							| 49 | 47 48 | remulcld |  |-  ( ( ph /\ k e. Z ) -> ( ( -u 1 ^ k ) x. ( G ` k ) ) e. RR ) | 
						
							| 50 | 6 49 | eqeltrd |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) | 
						
							| 51 | 1 2 50 | serfre |  |-  ( ph -> seq M ( + , F ) : Z --> RR ) | 
						
							| 52 | 51 | ffvelcdmda |  |-  ( ( ph /\ N e. Z ) -> ( seq M ( + , F ) ` N ) e. RR ) | 
						
							| 53 | 44 52 | remulcld |  |-  ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) e. RR ) | 
						
							| 54 | 53 | leidd |  |-  ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) | 
						
							| 55 | 40 54 | eqbrtrd |  |-  ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 0 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) | 
						
							| 56 | 3 | ad2antrr |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> G : Z --> RR ) | 
						
							| 57 |  | ax-1cn |  |-  1 e. CC | 
						
							| 58 | 57 | 2timesi |  |-  ( 2 x. 1 ) = ( 1 + 1 ) | 
						
							| 59 | 58 | oveq2i |  |-  ( ( N + ( 2 x. n ) ) + ( 2 x. 1 ) ) = ( ( N + ( 2 x. n ) ) + ( 1 + 1 ) ) | 
						
							| 60 |  | simpr |  |-  ( ( ph /\ N e. Z ) -> N e. Z ) | 
						
							| 61 | 60 1 | eleqtrdi |  |-  ( ( ph /\ N e. Z ) -> N e. ( ZZ>= ` M ) ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> N e. ( ZZ>= ` M ) ) | 
						
							| 63 |  | eluzelz |  |-  ( N e. ( ZZ>= ` M ) -> N e. ZZ ) | 
						
							| 64 | 62 63 | syl |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> N e. ZZ ) | 
						
							| 65 | 64 | zcnd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> N e. CC ) | 
						
							| 66 |  | 2cn |  |-  2 e. CC | 
						
							| 67 |  | nn0cn |  |-  ( n e. NN0 -> n e. CC ) | 
						
							| 68 | 67 | adantl |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> n e. CC ) | 
						
							| 69 |  | mulcl |  |-  ( ( 2 e. CC /\ n e. CC ) -> ( 2 x. n ) e. CC ) | 
						
							| 70 | 66 68 69 | sylancr |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 2 x. n ) e. CC ) | 
						
							| 71 | 66 57 | mulcli |  |-  ( 2 x. 1 ) e. CC | 
						
							| 72 | 71 | a1i |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 2 x. 1 ) e. CC ) | 
						
							| 73 | 65 70 72 | addassd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( N + ( 2 x. n ) ) + ( 2 x. 1 ) ) = ( N + ( ( 2 x. n ) + ( 2 x. 1 ) ) ) ) | 
						
							| 74 | 59 73 | eqtr3id |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( N + ( 2 x. n ) ) + ( 1 + 1 ) ) = ( N + ( ( 2 x. n ) + ( 2 x. 1 ) ) ) ) | 
						
							| 75 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 76 |  | simpr |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> n e. NN0 ) | 
						
							| 77 |  | nn0mulcl |  |-  ( ( 2 e. NN0 /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) | 
						
							| 78 | 75 76 77 | sylancr |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) | 
						
							| 79 |  | uzaddcl |  |-  ( ( N e. ( ZZ>= ` M ) /\ ( 2 x. n ) e. NN0 ) -> ( N + ( 2 x. n ) ) e. ( ZZ>= ` M ) ) | 
						
							| 80 | 62 78 79 | syl2anc |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( N + ( 2 x. n ) ) e. ( ZZ>= ` M ) ) | 
						
							| 81 | 33 80 | sselid |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( N + ( 2 x. n ) ) e. ZZ ) | 
						
							| 82 | 81 | zcnd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( N + ( 2 x. n ) ) e. CC ) | 
						
							| 83 |  | 1cnd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> 1 e. CC ) | 
						
							| 84 | 82 83 83 | addassd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) = ( ( N + ( 2 x. n ) ) + ( 1 + 1 ) ) ) | 
						
							| 85 |  | 2cnd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> 2 e. CC ) | 
						
							| 86 | 85 68 83 | adddid |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 2 x. ( n + 1 ) ) = ( ( 2 x. n ) + ( 2 x. 1 ) ) ) | 
						
							| 87 | 86 | oveq2d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( N + ( 2 x. ( n + 1 ) ) ) = ( N + ( ( 2 x. n ) + ( 2 x. 1 ) ) ) ) | 
						
							| 88 | 74 84 87 | 3eqtr4d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) = ( N + ( 2 x. ( n + 1 ) ) ) ) | 
						
							| 89 |  | peano2nn0 |  |-  ( n e. NN0 -> ( n + 1 ) e. NN0 ) | 
						
							| 90 | 89 | adantl |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( n + 1 ) e. NN0 ) | 
						
							| 91 |  | nn0mulcl |  |-  ( ( 2 e. NN0 /\ ( n + 1 ) e. NN0 ) -> ( 2 x. ( n + 1 ) ) e. NN0 ) | 
						
							| 92 | 75 90 91 | sylancr |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 2 x. ( n + 1 ) ) e. NN0 ) | 
						
							| 93 |  | uzaddcl |  |-  ( ( N e. ( ZZ>= ` M ) /\ ( 2 x. ( n + 1 ) ) e. NN0 ) -> ( N + ( 2 x. ( n + 1 ) ) ) e. ( ZZ>= ` M ) ) | 
						
							| 94 | 62 92 93 | syl2anc |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( N + ( 2 x. ( n + 1 ) ) ) e. ( ZZ>= ` M ) ) | 
						
							| 95 | 94 1 | eleqtrrdi |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( N + ( 2 x. ( n + 1 ) ) ) e. Z ) | 
						
							| 96 | 88 95 | eqeltrd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) e. Z ) | 
						
							| 97 | 56 96 | ffvelcdmd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) e. RR ) | 
						
							| 98 |  | peano2uz |  |-  ( ( N + ( 2 x. n ) ) e. ( ZZ>= ` M ) -> ( ( N + ( 2 x. n ) ) + 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 99 | 80 98 | syl |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( N + ( 2 x. n ) ) + 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 100 | 99 1 | eleqtrrdi |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( N + ( 2 x. n ) ) + 1 ) e. Z ) | 
						
							| 101 | 56 100 | ffvelcdmd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) e. RR ) | 
						
							| 102 | 97 101 | resubcld |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) - ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) e. RR ) | 
						
							| 103 |  | 0red |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> 0 e. RR ) | 
						
							| 104 | 44 | adantr |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ N ) e. RR ) | 
						
							| 105 | 51 | ad2antrr |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> seq M ( + , F ) : Z --> RR ) | 
						
							| 106 | 80 1 | eleqtrrdi |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( N + ( 2 x. n ) ) e. Z ) | 
						
							| 107 | 105 106 | ffvelcdmd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) e. RR ) | 
						
							| 108 | 104 107 | remulcld |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) e. RR ) | 
						
							| 109 |  | fvoveq1 |  |-  ( k = ( ( N + ( 2 x. n ) ) + 1 ) -> ( G ` ( k + 1 ) ) = ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) | 
						
							| 110 |  | fveq2 |  |-  ( k = ( ( N + ( 2 x. n ) ) + 1 ) -> ( G ` k ) = ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) | 
						
							| 111 | 109 110 | breq12d |  |-  ( k = ( ( N + ( 2 x. n ) ) + 1 ) -> ( ( G ` ( k + 1 ) ) <_ ( G ` k ) <-> ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) <_ ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) | 
						
							| 112 | 4 | ralrimiva |  |-  ( ph -> A. k e. Z ( G ` ( k + 1 ) ) <_ ( G ` k ) ) | 
						
							| 113 | 112 | ad2antrr |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> A. k e. Z ( G ` ( k + 1 ) ) <_ ( G ` k ) ) | 
						
							| 114 | 111 113 100 | rspcdva |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) <_ ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) | 
						
							| 115 | 97 101 | suble0d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) - ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) <_ 0 <-> ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) <_ ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) | 
						
							| 116 | 114 115 | mpbird |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) - ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) <_ 0 ) | 
						
							| 117 | 102 103 108 116 | leadd2dd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) + ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) - ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) <_ ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) + 0 ) ) | 
						
							| 118 |  | seqp1 |  |-  ( ( ( N + ( 2 x. n ) ) + 1 ) e. ( ZZ>= ` M ) -> ( seq M ( + , F ) ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) = ( ( seq M ( + , F ) ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) | 
						
							| 119 | 99 118 | syl |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( seq M ( + , F ) ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) = ( ( seq M ( + , F ) ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) | 
						
							| 120 |  | seqp1 |  |-  ( ( N + ( 2 x. n ) ) e. ( ZZ>= ` M ) -> ( seq M ( + , F ) ` ( ( N + ( 2 x. n ) ) + 1 ) ) = ( ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) + ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) | 
						
							| 121 | 80 120 | syl |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( seq M ( + , F ) ` ( ( N + ( 2 x. n ) ) + 1 ) ) = ( ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) + ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) | 
						
							| 122 | 121 | oveq1d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( seq M ( + , F ) ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( ( ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) + ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) | 
						
							| 123 | 119 122 | eqtrd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( seq M ( + , F ) ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) = ( ( ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) + ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) | 
						
							| 124 | 88 | fveq2d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( seq M ( + , F ) ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) = ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) | 
						
							| 125 | 107 | recnd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) e. CC ) | 
						
							| 126 |  | fveq2 |  |-  ( k = ( ( N + ( 2 x. n ) ) + 1 ) -> ( F ` k ) = ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) | 
						
							| 127 |  | oveq2 |  |-  ( k = ( ( N + ( 2 x. n ) ) + 1 ) -> ( -u 1 ^ k ) = ( -u 1 ^ ( ( N + ( 2 x. n ) ) + 1 ) ) ) | 
						
							| 128 | 127 110 | oveq12d |  |-  ( k = ( ( N + ( 2 x. n ) ) + 1 ) -> ( ( -u 1 ^ k ) x. ( G ` k ) ) = ( ( -u 1 ^ ( ( N + ( 2 x. n ) ) + 1 ) ) x. ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) | 
						
							| 129 | 126 128 | eqeq12d |  |-  ( k = ( ( N + ( 2 x. n ) ) + 1 ) -> ( ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) <-> ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) = ( ( -u 1 ^ ( ( N + ( 2 x. n ) ) + 1 ) ) x. ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) ) | 
						
							| 130 | 6 | ralrimiva |  |-  ( ph -> A. k e. Z ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) ) | 
						
							| 131 | 130 | ad2antrr |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> A. k e. Z ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) ) | 
						
							| 132 | 129 131 100 | rspcdva |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) = ( ( -u 1 ^ ( ( N + ( 2 x. n ) ) + 1 ) ) x. ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) | 
						
							| 133 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 134 | 133 | a1i |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> -u 1 e. CC ) | 
						
							| 135 | 42 | a1i |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> -u 1 =/= 0 ) | 
						
							| 136 | 134 135 81 | expp1zd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( ( N + ( 2 x. n ) ) + 1 ) ) = ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u 1 ) ) | 
						
							| 137 | 41 | a1i |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> -u 1 e. RR ) | 
						
							| 138 | 137 135 81 | reexpclzd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( N + ( 2 x. n ) ) ) e. RR ) | 
						
							| 139 | 138 | recnd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( N + ( 2 x. n ) ) ) e. CC ) | 
						
							| 140 |  | mulcom |  |-  ( ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) e. CC /\ -u 1 e. CC ) -> ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u 1 ) = ( -u 1 x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) ) | 
						
							| 141 | 139 133 140 | sylancl |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u 1 ) = ( -u 1 x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) ) | 
						
							| 142 | 139 | mulm1d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) = -u ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) | 
						
							| 143 | 136 141 142 | 3eqtrd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( ( N + ( 2 x. n ) ) + 1 ) ) = -u ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) | 
						
							| 144 | 143 | oveq1d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ ( ( N + ( 2 x. n ) ) + 1 ) ) x. ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = ( -u ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) | 
						
							| 145 | 101 | recnd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) e. CC ) | 
						
							| 146 |  | mulneg12 |  |-  ( ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) e. CC /\ ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) e. CC ) -> ( -u ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) | 
						
							| 147 | 139 145 146 | syl2anc |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) | 
						
							| 148 | 132 144 147 | 3eqtrd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) = ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) | 
						
							| 149 | 101 | renegcld |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) e. RR ) | 
						
							| 150 | 138 149 | remulcld |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) e. RR ) | 
						
							| 151 | 148 150 | eqeltrd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) e. RR ) | 
						
							| 152 | 151 | recnd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) e. CC ) | 
						
							| 153 |  | fveq2 |  |-  ( k = ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) -> ( F ` k ) = ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) | 
						
							| 154 |  | oveq2 |  |-  ( k = ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) -> ( -u 1 ^ k ) = ( -u 1 ^ ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) | 
						
							| 155 |  | fveq2 |  |-  ( k = ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) -> ( G ` k ) = ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) | 
						
							| 156 | 154 155 | oveq12d |  |-  ( k = ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) -> ( ( -u 1 ^ k ) x. ( G ` k ) ) = ( ( -u 1 ^ ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) | 
						
							| 157 | 153 156 | eqeq12d |  |-  ( k = ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) -> ( ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) <-> ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) = ( ( -u 1 ^ ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) | 
						
							| 158 | 157 131 96 | rspcdva |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) = ( ( -u 1 ^ ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) | 
						
							| 159 | 81 | peano2zd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( N + ( 2 x. n ) ) + 1 ) e. ZZ ) | 
						
							| 160 | 134 135 159 | expp1zd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) = ( ( -u 1 ^ ( ( N + ( 2 x. n ) ) + 1 ) ) x. -u 1 ) ) | 
						
							| 161 | 143 | oveq1d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ ( ( N + ( 2 x. n ) ) + 1 ) ) x. -u 1 ) = ( -u ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u 1 ) ) | 
						
							| 162 |  | mul2neg |  |-  ( ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) e. CC /\ 1 e. CC ) -> ( -u ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u 1 ) = ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. 1 ) ) | 
						
							| 163 | 139 57 162 | sylancl |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u 1 ) = ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. 1 ) ) | 
						
							| 164 | 139 | mulridd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. 1 ) = ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) | 
						
							| 165 | 163 164 | eqtrd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u 1 ) = ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) | 
						
							| 166 | 160 161 165 | 3eqtrd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) = ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) | 
						
							| 167 | 166 | oveq1d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) | 
						
							| 168 | 158 167 | eqtrd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) = ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) | 
						
							| 169 | 138 97 | remulcld |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) e. RR ) | 
						
							| 170 | 168 169 | eqeltrd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) e. RR ) | 
						
							| 171 | 170 | recnd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) e. CC ) | 
						
							| 172 | 125 152 171 | addassd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) + ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) + ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) | 
						
							| 173 | 123 124 172 | 3eqtr3d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) = ( ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) + ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) | 
						
							| 174 | 173 | oveq2d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) = ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) + ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) ) | 
						
							| 175 | 104 | recnd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ N ) e. CC ) | 
						
							| 176 | 151 170 | readdcld |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) e. RR ) | 
						
							| 177 | 176 | recnd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) e. CC ) | 
						
							| 178 | 175 125 177 | adddid |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) + ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) + ( ( -u 1 ^ N ) x. ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) ) | 
						
							| 179 | 175 152 171 | adddid |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) = ( ( ( -u 1 ^ N ) x. ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) + ( ( -u 1 ^ N ) x. ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) | 
						
							| 180 | 148 | oveq2d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = ( ( -u 1 ^ N ) x. ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) ) | 
						
							| 181 | 149 | recnd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) e. CC ) | 
						
							| 182 | 175 139 181 | mulassd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = ( ( -u 1 ^ N ) x. ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) ) | 
						
							| 183 | 180 182 | eqtr4d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = ( ( ( -u 1 ^ N ) x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) | 
						
							| 184 | 85 65 68 | adddid |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 2 x. ( N + n ) ) = ( ( 2 x. N ) + ( 2 x. n ) ) ) | 
						
							| 185 | 65 | 2timesd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 2 x. N ) = ( N + N ) ) | 
						
							| 186 | 185 | oveq1d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( 2 x. N ) + ( 2 x. n ) ) = ( ( N + N ) + ( 2 x. n ) ) ) | 
						
							| 187 | 65 65 70 | addassd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( N + N ) + ( 2 x. n ) ) = ( N + ( N + ( 2 x. n ) ) ) ) | 
						
							| 188 | 184 186 187 | 3eqtrrd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( N + ( N + ( 2 x. n ) ) ) = ( 2 x. ( N + n ) ) ) | 
						
							| 189 | 188 | oveq2d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( N + ( N + ( 2 x. n ) ) ) ) = ( -u 1 ^ ( 2 x. ( N + n ) ) ) ) | 
						
							| 190 |  | expaddz |  |-  ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( N e. ZZ /\ ( N + ( 2 x. n ) ) e. ZZ ) ) -> ( -u 1 ^ ( N + ( N + ( 2 x. n ) ) ) ) = ( ( -u 1 ^ N ) x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) ) | 
						
							| 191 | 134 135 64 81 190 | syl22anc |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( N + ( N + ( 2 x. n ) ) ) ) = ( ( -u 1 ^ N ) x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) ) | 
						
							| 192 |  | 2z |  |-  2 e. ZZ | 
						
							| 193 | 192 | a1i |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> 2 e. ZZ ) | 
						
							| 194 |  | nn0z |  |-  ( n e. NN0 -> n e. ZZ ) | 
						
							| 195 |  | zaddcl |  |-  ( ( N e. ZZ /\ n e. ZZ ) -> ( N + n ) e. ZZ ) | 
						
							| 196 | 36 194 195 | syl2an |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( N + n ) e. ZZ ) | 
						
							| 197 |  | expmulz |  |-  ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( 2 e. ZZ /\ ( N + n ) e. ZZ ) ) -> ( -u 1 ^ ( 2 x. ( N + n ) ) ) = ( ( -u 1 ^ 2 ) ^ ( N + n ) ) ) | 
						
							| 198 | 134 135 193 196 197 | syl22anc |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( 2 x. ( N + n ) ) ) = ( ( -u 1 ^ 2 ) ^ ( N + n ) ) ) | 
						
							| 199 |  | neg1sqe1 |  |-  ( -u 1 ^ 2 ) = 1 | 
						
							| 200 | 199 | oveq1i |  |-  ( ( -u 1 ^ 2 ) ^ ( N + n ) ) = ( 1 ^ ( N + n ) ) | 
						
							| 201 |  | 1exp |  |-  ( ( N + n ) e. ZZ -> ( 1 ^ ( N + n ) ) = 1 ) | 
						
							| 202 | 196 201 | syl |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 1 ^ ( N + n ) ) = 1 ) | 
						
							| 203 | 200 202 | eqtrid |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ 2 ) ^ ( N + n ) ) = 1 ) | 
						
							| 204 | 198 203 | eqtrd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( 2 x. ( N + n ) ) ) = 1 ) | 
						
							| 205 | 189 191 204 | 3eqtr3d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) = 1 ) | 
						
							| 206 | 205 | oveq1d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = ( 1 x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) | 
						
							| 207 | 181 | mullidd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 1 x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) | 
						
							| 208 | 183 206 207 | 3eqtrd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) | 
						
							| 209 | 168 | oveq2d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( ( -u 1 ^ N ) x. ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) | 
						
							| 210 | 97 | recnd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) e. CC ) | 
						
							| 211 | 175 139 210 | mulassd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( ( -u 1 ^ N ) x. ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) | 
						
							| 212 | 209 211 | eqtr4d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( ( ( -u 1 ^ N ) x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) | 
						
							| 213 | 205 | oveq1d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( 1 x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) | 
						
							| 214 | 210 | mullidd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 1 x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) | 
						
							| 215 | 212 213 214 | 3eqtrd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) | 
						
							| 216 | 208 215 | oveq12d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) + ( ( -u 1 ^ N ) x. ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) = ( -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) | 
						
							| 217 | 145 | negcld |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) e. CC ) | 
						
							| 218 | 217 210 | addcomd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) + -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) | 
						
							| 219 | 210 145 | negsubd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) + -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) - ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) | 
						
							| 220 | 218 219 | eqtrd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) - ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) | 
						
							| 221 | 179 216 220 | 3eqtrd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) = ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) - ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) | 
						
							| 222 | 221 | oveq2d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) + ( ( -u 1 ^ N ) x. ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) + ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) - ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) ) | 
						
							| 223 | 174 178 222 | 3eqtrrd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) + ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) - ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) = ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) ) | 
						
							| 224 | 108 | recnd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) e. CC ) | 
						
							| 225 | 224 | addridd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) + 0 ) = ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) ) | 
						
							| 226 | 117 223 225 | 3brtr3d |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) ) | 
						
							| 227 | 105 95 | ffvelcdmd |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) e. RR ) | 
						
							| 228 | 104 227 | remulcld |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) e. RR ) | 
						
							| 229 | 53 | adantr |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) e. RR ) | 
						
							| 230 |  | letr |  |-  ( ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) e. RR /\ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) e. RR /\ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) e. RR ) -> ( ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) /\ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) | 
						
							| 231 | 228 108 229 230 | syl3anc |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) /\ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) | 
						
							| 232 | 226 231 | mpand |  |-  ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) | 
						
							| 233 | 232 | expcom |  |-  ( n e. NN0 -> ( ( ph /\ N e. Z ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) ) | 
						
							| 234 | 233 | a2d |  |-  ( n e. NN0 -> ( ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) -> ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) ) | 
						
							| 235 | 14 20 26 32 55 234 | nn0ind |  |-  ( K e. NN0 -> ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) | 
						
							| 236 | 235 | com12 |  |-  ( ( ph /\ N e. Z ) -> ( K e. NN0 -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) | 
						
							| 237 | 236 | 3impia |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) |