| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iseralt.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | iseralt.2 |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | iseralt.3 |  |-  ( ph -> G : Z --> RR ) | 
						
							| 4 |  | iseralt.4 |  |-  ( ( ph /\ k e. Z ) -> ( G ` ( k + 1 ) ) <_ ( G ` k ) ) | 
						
							| 5 |  | iseralt.5 |  |-  ( ph -> G ~~> 0 ) | 
						
							| 6 |  | iseralt.6 |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) ) | 
						
							| 7 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 8 | 7 | a1i |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> -u 1 e. RR ) | 
						
							| 9 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 10 | 9 | a1i |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> -u 1 =/= 0 ) | 
						
							| 11 |  | uzssz |  |-  ( ZZ>= ` M ) C_ ZZ | 
						
							| 12 | 1 11 | eqsstri |  |-  Z C_ ZZ | 
						
							| 13 |  | simp2 |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> N e. Z ) | 
						
							| 14 | 12 13 | sselid |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> N e. ZZ ) | 
						
							| 15 | 8 10 14 | reexpclzd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ N ) e. RR ) | 
						
							| 16 | 15 | recnd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ N ) e. CC ) | 
						
							| 17 | 7 | a1i |  |-  ( ( ph /\ k e. Z ) -> -u 1 e. RR ) | 
						
							| 18 | 9 | a1i |  |-  ( ( ph /\ k e. Z ) -> -u 1 =/= 0 ) | 
						
							| 19 |  | simpr |  |-  ( ( ph /\ k e. Z ) -> k e. Z ) | 
						
							| 20 | 12 19 | sselid |  |-  ( ( ph /\ k e. Z ) -> k e. ZZ ) | 
						
							| 21 | 17 18 20 | reexpclzd |  |-  ( ( ph /\ k e. Z ) -> ( -u 1 ^ k ) e. RR ) | 
						
							| 22 | 3 | ffvelcdmda |  |-  ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) | 
						
							| 23 | 21 22 | remulcld |  |-  ( ( ph /\ k e. Z ) -> ( ( -u 1 ^ k ) x. ( G ` k ) ) e. RR ) | 
						
							| 24 | 6 23 | eqeltrd |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) | 
						
							| 25 | 1 2 24 | serfre |  |-  ( ph -> seq M ( + , F ) : Z --> RR ) | 
						
							| 26 | 25 | 3ad2ant1 |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> seq M ( + , F ) : Z --> RR ) | 
						
							| 27 | 13 1 | eleqtrdi |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> N e. ( ZZ>= ` M ) ) | 
						
							| 28 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 29 |  | simp3 |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> K e. NN0 ) | 
						
							| 30 |  | nn0mulcl |  |-  ( ( 2 e. NN0 /\ K e. NN0 ) -> ( 2 x. K ) e. NN0 ) | 
						
							| 31 | 28 29 30 | sylancr |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 2 x. K ) e. NN0 ) | 
						
							| 32 |  | uzaddcl |  |-  ( ( N e. ( ZZ>= ` M ) /\ ( 2 x. K ) e. NN0 ) -> ( N + ( 2 x. K ) ) e. ( ZZ>= ` M ) ) | 
						
							| 33 | 27 31 32 | syl2anc |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( N + ( 2 x. K ) ) e. ( ZZ>= ` M ) ) | 
						
							| 34 | 33 1 | eleqtrrdi |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( N + ( 2 x. K ) ) e. Z ) | 
						
							| 35 | 26 34 | ffvelcdmd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) e. RR ) | 
						
							| 36 | 35 | recnd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) e. CC ) | 
						
							| 37 | 26 13 | ffvelcdmd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` N ) e. RR ) | 
						
							| 38 | 37 | recnd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` N ) e. CC ) | 
						
							| 39 | 16 36 38 | subdid |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) | 
						
							| 40 | 39 | fveq2d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) ) = ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) ) | 
						
							| 41 | 35 37 | resubcld |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) e. RR ) | 
						
							| 42 | 41 | recnd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) e. CC ) | 
						
							| 43 | 16 42 | absmuld |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) ) = ( ( abs ` ( -u 1 ^ N ) ) x. ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) ) ) | 
						
							| 44 | 40 43 | eqtr3d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) = ( ( abs ` ( -u 1 ^ N ) ) x. ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) ) ) | 
						
							| 45 | 8 | recnd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> -u 1 e. CC ) | 
						
							| 46 |  | absexpz |  |-  ( ( -u 1 e. CC /\ -u 1 =/= 0 /\ N e. ZZ ) -> ( abs ` ( -u 1 ^ N ) ) = ( ( abs ` -u 1 ) ^ N ) ) | 
						
							| 47 | 45 10 14 46 | syl3anc |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( -u 1 ^ N ) ) = ( ( abs ` -u 1 ) ^ N ) ) | 
						
							| 48 |  | ax-1cn |  |-  1 e. CC | 
						
							| 49 | 48 | absnegi |  |-  ( abs ` -u 1 ) = ( abs ` 1 ) | 
						
							| 50 |  | abs1 |  |-  ( abs ` 1 ) = 1 | 
						
							| 51 | 49 50 | eqtri |  |-  ( abs ` -u 1 ) = 1 | 
						
							| 52 | 51 | oveq1i |  |-  ( ( abs ` -u 1 ) ^ N ) = ( 1 ^ N ) | 
						
							| 53 |  | 1exp |  |-  ( N e. ZZ -> ( 1 ^ N ) = 1 ) | 
						
							| 54 | 14 53 | syl |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 1 ^ N ) = 1 ) | 
						
							| 55 | 52 54 | eqtrid |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( abs ` -u 1 ) ^ N ) = 1 ) | 
						
							| 56 | 47 55 | eqtrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( -u 1 ^ N ) ) = 1 ) | 
						
							| 57 | 56 | oveq1d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( abs ` ( -u 1 ^ N ) ) x. ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) ) = ( 1 x. ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) ) ) | 
						
							| 58 | 42 | abscld |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) e. RR ) | 
						
							| 59 | 58 | recnd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) e. CC ) | 
						
							| 60 | 59 | mullidd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 1 x. ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) ) = ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) ) | 
						
							| 61 | 44 57 60 | 3eqtrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) = ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) ) | 
						
							| 62 | 15 37 | remulcld |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) e. RR ) | 
						
							| 63 | 3 | 3ad2ant1 |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> G : Z --> RR ) | 
						
							| 64 | 1 | peano2uzs |  |-  ( N e. Z -> ( N + 1 ) e. Z ) | 
						
							| 65 | 64 | 3ad2ant2 |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( N + 1 ) e. Z ) | 
						
							| 66 | 63 65 | ffvelcdmd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( G ` ( N + 1 ) ) e. RR ) | 
						
							| 67 | 62 66 | resubcld |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) - ( G ` ( N + 1 ) ) ) e. RR ) | 
						
							| 68 | 1 | peano2uzs |  |-  ( ( N + ( 2 x. K ) ) e. Z -> ( ( N + ( 2 x. K ) ) + 1 ) e. Z ) | 
						
							| 69 | 34 68 | syl |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( N + ( 2 x. K ) ) + 1 ) e. Z ) | 
						
							| 70 | 26 69 | ffvelcdmd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) e. RR ) | 
						
							| 71 | 15 70 | remulcld |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) e. RR ) | 
						
							| 72 | 15 35 | remulcld |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) e. RR ) | 
						
							| 73 |  | seqp1 |  |-  ( N e. ( ZZ>= ` M ) -> ( seq M ( + , F ) ` ( N + 1 ) ) = ( ( seq M ( + , F ) ` N ) + ( F ` ( N + 1 ) ) ) ) | 
						
							| 74 | 27 73 | syl |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( N + 1 ) ) = ( ( seq M ( + , F ) ` N ) + ( F ` ( N + 1 ) ) ) ) | 
						
							| 75 |  | fveq2 |  |-  ( k = ( N + 1 ) -> ( F ` k ) = ( F ` ( N + 1 ) ) ) | 
						
							| 76 |  | oveq2 |  |-  ( k = ( N + 1 ) -> ( -u 1 ^ k ) = ( -u 1 ^ ( N + 1 ) ) ) | 
						
							| 77 |  | fveq2 |  |-  ( k = ( N + 1 ) -> ( G ` k ) = ( G ` ( N + 1 ) ) ) | 
						
							| 78 | 76 77 | oveq12d |  |-  ( k = ( N + 1 ) -> ( ( -u 1 ^ k ) x. ( G ` k ) ) = ( ( -u 1 ^ ( N + 1 ) ) x. ( G ` ( N + 1 ) ) ) ) | 
						
							| 79 | 75 78 | eqeq12d |  |-  ( k = ( N + 1 ) -> ( ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) <-> ( F ` ( N + 1 ) ) = ( ( -u 1 ^ ( N + 1 ) ) x. ( G ` ( N + 1 ) ) ) ) ) | 
						
							| 80 | 6 | ralrimiva |  |-  ( ph -> A. k e. Z ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) ) | 
						
							| 81 | 80 | 3ad2ant1 |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> A. k e. Z ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) ) | 
						
							| 82 | 79 81 65 | rspcdva |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( F ` ( N + 1 ) ) = ( ( -u 1 ^ ( N + 1 ) ) x. ( G ` ( N + 1 ) ) ) ) | 
						
							| 83 | 82 | oveq2d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( seq M ( + , F ) ` N ) + ( F ` ( N + 1 ) ) ) = ( ( seq M ( + , F ) ` N ) + ( ( -u 1 ^ ( N + 1 ) ) x. ( G ` ( N + 1 ) ) ) ) ) | 
						
							| 84 | 45 10 14 | expp1zd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( N + 1 ) ) = ( ( -u 1 ^ N ) x. -u 1 ) ) | 
						
							| 85 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 86 |  | mulcom |  |-  ( ( ( -u 1 ^ N ) e. CC /\ -u 1 e. CC ) -> ( ( -u 1 ^ N ) x. -u 1 ) = ( -u 1 x. ( -u 1 ^ N ) ) ) | 
						
							| 87 | 16 85 86 | sylancl |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. -u 1 ) = ( -u 1 x. ( -u 1 ^ N ) ) ) | 
						
							| 88 | 16 | mulm1d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 x. ( -u 1 ^ N ) ) = -u ( -u 1 ^ N ) ) | 
						
							| 89 | 84 87 88 | 3eqtrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( N + 1 ) ) = -u ( -u 1 ^ N ) ) | 
						
							| 90 | 89 | oveq1d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ ( N + 1 ) ) x. ( G ` ( N + 1 ) ) ) = ( -u ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) | 
						
							| 91 | 66 | recnd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( G ` ( N + 1 ) ) e. CC ) | 
						
							| 92 | 16 91 | mulneg1d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) = -u ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) | 
						
							| 93 | 90 92 | eqtrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ ( N + 1 ) ) x. ( G ` ( N + 1 ) ) ) = -u ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) | 
						
							| 94 | 93 | oveq2d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( seq M ( + , F ) ` N ) + ( ( -u 1 ^ ( N + 1 ) ) x. ( G ` ( N + 1 ) ) ) ) = ( ( seq M ( + , F ) ` N ) + -u ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) ) | 
						
							| 95 | 74 83 94 | 3eqtrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( N + 1 ) ) = ( ( seq M ( + , F ) ` N ) + -u ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) ) | 
						
							| 96 | 15 66 | remulcld |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) e. RR ) | 
						
							| 97 | 96 | recnd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) e. CC ) | 
						
							| 98 | 38 97 | negsubd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( seq M ( + , F ) ` N ) + -u ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) = ( ( seq M ( + , F ) ` N ) - ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) ) | 
						
							| 99 | 95 98 | eqtrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( N + 1 ) ) = ( ( seq M ( + , F ) ` N ) - ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) ) | 
						
							| 100 | 99 | oveq2d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) = ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` N ) - ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) ) ) | 
						
							| 101 | 16 38 97 | subdid |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` N ) - ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) - ( ( -u 1 ^ N ) x. ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) ) ) | 
						
							| 102 | 14 | zcnd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> N e. CC ) | 
						
							| 103 | 102 | 2timesd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 2 x. N ) = ( N + N ) ) | 
						
							| 104 | 103 | oveq2d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( 2 x. N ) ) = ( -u 1 ^ ( N + N ) ) ) | 
						
							| 105 |  | 2z |  |-  2 e. ZZ | 
						
							| 106 | 105 | a1i |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> 2 e. ZZ ) | 
						
							| 107 |  | expmulz |  |-  ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( 2 e. ZZ /\ N e. ZZ ) ) -> ( -u 1 ^ ( 2 x. N ) ) = ( ( -u 1 ^ 2 ) ^ N ) ) | 
						
							| 108 | 45 10 106 14 107 | syl22anc |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( 2 x. N ) ) = ( ( -u 1 ^ 2 ) ^ N ) ) | 
						
							| 109 | 104 108 | eqtr3d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( N + N ) ) = ( ( -u 1 ^ 2 ) ^ N ) ) | 
						
							| 110 |  | neg1sqe1 |  |-  ( -u 1 ^ 2 ) = 1 | 
						
							| 111 | 110 | oveq1i |  |-  ( ( -u 1 ^ 2 ) ^ N ) = ( 1 ^ N ) | 
						
							| 112 | 109 111 | eqtrdi |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( N + N ) ) = ( 1 ^ N ) ) | 
						
							| 113 |  | expaddz |  |-  ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( N e. ZZ /\ N e. ZZ ) ) -> ( -u 1 ^ ( N + N ) ) = ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) ) | 
						
							| 114 | 45 10 14 14 113 | syl22anc |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( N + N ) ) = ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) ) | 
						
							| 115 | 112 114 54 | 3eqtr3d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) = 1 ) | 
						
							| 116 | 115 | oveq1d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) x. ( G ` ( N + 1 ) ) ) = ( 1 x. ( G ` ( N + 1 ) ) ) ) | 
						
							| 117 | 16 16 91 | mulassd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) x. ( G ` ( N + 1 ) ) ) = ( ( -u 1 ^ N ) x. ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) ) | 
						
							| 118 | 91 | mullidd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 1 x. ( G ` ( N + 1 ) ) ) = ( G ` ( N + 1 ) ) ) | 
						
							| 119 | 116 117 118 | 3eqtr3d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) = ( G ` ( N + 1 ) ) ) | 
						
							| 120 | 119 | oveq2d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) - ( ( -u 1 ^ N ) x. ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) - ( G ` ( N + 1 ) ) ) ) | 
						
							| 121 | 100 101 120 | 3eqtrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) - ( G ` ( N + 1 ) ) ) ) | 
						
							| 122 | 1 2 3 4 5 6 | iseraltlem2 |  |-  ( ( ph /\ ( N + 1 ) e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ ( N + 1 ) ) x. ( seq M ( + , F ) ` ( ( N + 1 ) + ( 2 x. K ) ) ) ) <_ ( ( -u 1 ^ ( N + 1 ) ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) ) | 
						
							| 123 | 64 122 | syl3an2 |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ ( N + 1 ) ) x. ( seq M ( + , F ) ` ( ( N + 1 ) + ( 2 x. K ) ) ) ) <_ ( ( -u 1 ^ ( N + 1 ) ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) ) | 
						
							| 124 |  | 1cnd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> 1 e. CC ) | 
						
							| 125 | 31 | nn0cnd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 2 x. K ) e. CC ) | 
						
							| 126 | 102 124 125 | add32d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( N + 1 ) + ( 2 x. K ) ) = ( ( N + ( 2 x. K ) ) + 1 ) ) | 
						
							| 127 | 126 | fveq2d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( ( N + 1 ) + ( 2 x. K ) ) ) = ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) | 
						
							| 128 | 89 127 | oveq12d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ ( N + 1 ) ) x. ( seq M ( + , F ) ` ( ( N + 1 ) + ( 2 x. K ) ) ) ) = ( -u ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) | 
						
							| 129 | 89 | oveq1d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ ( N + 1 ) ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) = ( -u ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) ) | 
						
							| 130 | 123 128 129 | 3brtr3d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) <_ ( -u ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) ) | 
						
							| 131 | 70 | recnd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) e. CC ) | 
						
							| 132 | 16 131 | mulneg1d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) = -u ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) | 
						
							| 133 | 26 65 | ffvelcdmd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( N + 1 ) ) e. RR ) | 
						
							| 134 | 133 | recnd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( N + 1 ) ) e. CC ) | 
						
							| 135 | 16 134 | mulneg1d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) = -u ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) ) | 
						
							| 136 | 130 132 135 | 3brtr3d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> -u ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) <_ -u ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) ) | 
						
							| 137 | 15 133 | remulcld |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) e. RR ) | 
						
							| 138 | 137 71 | lenegd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) <-> -u ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) <_ -u ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) ) ) | 
						
							| 139 | 136 138 | mpbird |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) | 
						
							| 140 | 121 139 | eqbrtrrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) - ( G ` ( N + 1 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) | 
						
							| 141 |  | seqp1 |  |-  ( ( N + ( 2 x. K ) ) e. ( ZZ>= ` M ) -> ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) = ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) + ( F ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) | 
						
							| 142 | 33 141 | syl |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) = ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) + ( F ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) | 
						
							| 143 |  | fveq2 |  |-  ( k = ( ( N + ( 2 x. K ) ) + 1 ) -> ( F ` k ) = ( F ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) | 
						
							| 144 |  | oveq2 |  |-  ( k = ( ( N + ( 2 x. K ) ) + 1 ) -> ( -u 1 ^ k ) = ( -u 1 ^ ( ( N + ( 2 x. K ) ) + 1 ) ) ) | 
						
							| 145 |  | fveq2 |  |-  ( k = ( ( N + ( 2 x. K ) ) + 1 ) -> ( G ` k ) = ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) | 
						
							| 146 | 144 145 | oveq12d |  |-  ( k = ( ( N + ( 2 x. K ) ) + 1 ) -> ( ( -u 1 ^ k ) x. ( G ` k ) ) = ( ( -u 1 ^ ( ( N + ( 2 x. K ) ) + 1 ) ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) | 
						
							| 147 | 143 146 | eqeq12d |  |-  ( k = ( ( N + ( 2 x. K ) ) + 1 ) -> ( ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) <-> ( F ` ( ( N + ( 2 x. K ) ) + 1 ) ) = ( ( -u 1 ^ ( ( N + ( 2 x. K ) ) + 1 ) ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) ) | 
						
							| 148 | 147 81 69 | rspcdva |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( F ` ( ( N + ( 2 x. K ) ) + 1 ) ) = ( ( -u 1 ^ ( ( N + ( 2 x. K ) ) + 1 ) ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) | 
						
							| 149 | 12 65 | sselid |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( N + 1 ) e. ZZ ) | 
						
							| 150 | 31 | nn0zd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 2 x. K ) e. ZZ ) | 
						
							| 151 |  | expaddz |  |-  ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( ( N + 1 ) e. ZZ /\ ( 2 x. K ) e. ZZ ) ) -> ( -u 1 ^ ( ( N + 1 ) + ( 2 x. K ) ) ) = ( ( -u 1 ^ ( N + 1 ) ) x. ( -u 1 ^ ( 2 x. K ) ) ) ) | 
						
							| 152 | 45 10 149 150 151 | syl22anc |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( ( N + 1 ) + ( 2 x. K ) ) ) = ( ( -u 1 ^ ( N + 1 ) ) x. ( -u 1 ^ ( 2 x. K ) ) ) ) | 
						
							| 153 | 29 | nn0zd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> K e. ZZ ) | 
						
							| 154 |  | expmulz |  |-  ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( 2 e. ZZ /\ K e. ZZ ) ) -> ( -u 1 ^ ( 2 x. K ) ) = ( ( -u 1 ^ 2 ) ^ K ) ) | 
						
							| 155 | 45 10 106 153 154 | syl22anc |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( 2 x. K ) ) = ( ( -u 1 ^ 2 ) ^ K ) ) | 
						
							| 156 | 110 | oveq1i |  |-  ( ( -u 1 ^ 2 ) ^ K ) = ( 1 ^ K ) | 
						
							| 157 |  | 1exp |  |-  ( K e. ZZ -> ( 1 ^ K ) = 1 ) | 
						
							| 158 | 153 157 | syl |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 1 ^ K ) = 1 ) | 
						
							| 159 | 156 158 | eqtrid |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ 2 ) ^ K ) = 1 ) | 
						
							| 160 | 155 159 | eqtrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( 2 x. K ) ) = 1 ) | 
						
							| 161 | 89 160 | oveq12d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ ( N + 1 ) ) x. ( -u 1 ^ ( 2 x. K ) ) ) = ( -u ( -u 1 ^ N ) x. 1 ) ) | 
						
							| 162 | 152 161 | eqtrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( ( N + 1 ) + ( 2 x. K ) ) ) = ( -u ( -u 1 ^ N ) x. 1 ) ) | 
						
							| 163 | 126 | oveq2d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( ( N + 1 ) + ( 2 x. K ) ) ) = ( -u 1 ^ ( ( N + ( 2 x. K ) ) + 1 ) ) ) | 
						
							| 164 | 16 | negcld |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> -u ( -u 1 ^ N ) e. CC ) | 
						
							| 165 | 164 | mulridd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u ( -u 1 ^ N ) x. 1 ) = -u ( -u 1 ^ N ) ) | 
						
							| 166 | 162 163 165 | 3eqtr3d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( ( N + ( 2 x. K ) ) + 1 ) ) = -u ( -u 1 ^ N ) ) | 
						
							| 167 | 166 | oveq1d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ ( ( N + ( 2 x. K ) ) + 1 ) ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) = ( -u ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) | 
						
							| 168 | 63 69 | ffvelcdmd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) e. RR ) | 
						
							| 169 | 168 | recnd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) e. CC ) | 
						
							| 170 | 16 169 | mulneg1d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) = -u ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) | 
						
							| 171 | 148 167 170 | 3eqtrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( F ` ( ( N + ( 2 x. K ) ) + 1 ) ) = -u ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) | 
						
							| 172 | 171 | oveq2d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) + ( F ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) = ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) + -u ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) ) | 
						
							| 173 | 15 168 | remulcld |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) e. RR ) | 
						
							| 174 | 173 | recnd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) e. CC ) | 
						
							| 175 | 36 174 | negsubd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) + -u ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) = ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) ) | 
						
							| 176 | 142 172 175 | 3eqtrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) = ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) ) | 
						
							| 177 | 176 | oveq2d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) = ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) ) ) | 
						
							| 178 | 16 36 174 | subdid |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( ( -u 1 ^ N ) x. ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) ) ) | 
						
							| 179 | 115 | oveq1d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) = ( 1 x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) | 
						
							| 180 | 16 16 169 | mulassd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) = ( ( -u 1 ^ N ) x. ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) ) | 
						
							| 181 | 169 | mullidd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 1 x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) = ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) | 
						
							| 182 | 179 180 181 | 3eqtr3d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) = ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) | 
						
							| 183 | 182 | oveq2d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( ( -u 1 ^ N ) x. ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) | 
						
							| 184 | 177 178 183 | 3eqtrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) | 
						
							| 185 |  | simp1 |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ph ) | 
						
							| 186 | 1 2 3 4 5 | iseraltlem1 |  |-  ( ( ph /\ ( ( N + ( 2 x. K ) ) + 1 ) e. Z ) -> 0 <_ ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) | 
						
							| 187 | 185 69 186 | syl2anc |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> 0 <_ ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) | 
						
							| 188 | 72 168 | subge02d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 0 <_ ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) <-> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) ) ) | 
						
							| 189 | 187 188 | mpbid |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) ) | 
						
							| 190 | 184 189 | eqbrtrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) ) | 
						
							| 191 | 67 71 72 140 190 | letrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) - ( G ` ( N + 1 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) ) | 
						
							| 192 | 62 66 | readdcld |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) + ( G ` ( N + 1 ) ) ) e. RR ) | 
						
							| 193 | 1 2 3 4 5 6 | iseraltlem2 |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) | 
						
							| 194 | 1 2 3 4 5 | iseraltlem1 |  |-  ( ( ph /\ ( N + 1 ) e. Z ) -> 0 <_ ( G ` ( N + 1 ) ) ) | 
						
							| 195 | 185 65 194 | syl2anc |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> 0 <_ ( G ` ( N + 1 ) ) ) | 
						
							| 196 | 62 66 | addge01d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 0 <_ ( G ` ( N + 1 ) ) <-> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) <_ ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) + ( G ` ( N + 1 ) ) ) ) ) | 
						
							| 197 | 195 196 | mpbid |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) <_ ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) + ( G ` ( N + 1 ) ) ) ) | 
						
							| 198 | 72 62 192 193 197 | letrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) <_ ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) + ( G ` ( N + 1 ) ) ) ) | 
						
							| 199 | 72 62 66 | absdifled |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) <_ ( G ` ( N + 1 ) ) <-> ( ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) - ( G ` ( N + 1 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) /\ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) <_ ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) + ( G ` ( N + 1 ) ) ) ) ) ) | 
						
							| 200 | 191 198 199 | mpbir2and |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) <_ ( G ` ( N + 1 ) ) ) | 
						
							| 201 | 61 200 | eqbrtrrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) <_ ( G ` ( N + 1 ) ) ) | 
						
							| 202 | 16 131 38 | subdid |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) | 
						
							| 203 | 202 | fveq2d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) ) = ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) ) | 
						
							| 204 | 70 37 | resubcld |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) e. RR ) | 
						
							| 205 | 204 | recnd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) e. CC ) | 
						
							| 206 | 16 205 | absmuld |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) ) = ( ( abs ` ( -u 1 ^ N ) ) x. ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) ) ) | 
						
							| 207 | 203 206 | eqtr3d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) = ( ( abs ` ( -u 1 ^ N ) ) x. ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) ) ) | 
						
							| 208 | 56 | oveq1d |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( abs ` ( -u 1 ^ N ) ) x. ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) ) = ( 1 x. ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) ) ) | 
						
							| 209 | 205 | abscld |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) e. RR ) | 
						
							| 210 | 209 | recnd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) e. CC ) | 
						
							| 211 | 210 | mullidd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 1 x. ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) ) = ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) ) | 
						
							| 212 | 207 208 211 | 3eqtrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) = ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) ) | 
						
							| 213 | 71 72 192 190 198 | letrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) <_ ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) + ( G ` ( N + 1 ) ) ) ) | 
						
							| 214 | 71 62 66 | absdifled |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) <_ ( G ` ( N + 1 ) ) <-> ( ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) - ( G ` ( N + 1 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) /\ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) <_ ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) + ( G ` ( N + 1 ) ) ) ) ) ) | 
						
							| 215 | 140 213 214 | mpbir2and |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) <_ ( G ` ( N + 1 ) ) ) | 
						
							| 216 | 212 215 | eqbrtrrd |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) <_ ( G ` ( N + 1 ) ) ) | 
						
							| 217 | 201 216 | jca |  |-  ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) <_ ( G ` ( N + 1 ) ) /\ ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) <_ ( G ` ( N + 1 ) ) ) ) |