| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isercoll.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | isercoll.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | isercoll.g |  |-  ( ph -> G : NN --> Z ) | 
						
							| 4 |  | isercoll.i |  |-  ( ( ph /\ k e. NN ) -> ( G ` k ) < ( G ` ( k + 1 ) ) ) | 
						
							| 5 |  | isercoll.0 |  |-  ( ( ph /\ n e. ( Z \ ran G ) ) -> ( F ` n ) = 0 ) | 
						
							| 6 |  | isercoll.f |  |-  ( ( ph /\ n e. Z ) -> ( F ` n ) e. CC ) | 
						
							| 7 |  | isercoll.h |  |-  ( ( ph /\ k e. NN ) -> ( H ` k ) = ( F ` ( G ` k ) ) ) | 
						
							| 8 |  | uzssz |  |-  ( ZZ>= ` M ) C_ ZZ | 
						
							| 9 | 1 8 | eqsstri |  |-  Z C_ ZZ | 
						
							| 10 | 3 | ffvelcdmda |  |-  ( ( ph /\ n e. NN ) -> ( G ` n ) e. Z ) | 
						
							| 11 | 9 10 | sselid |  |-  ( ( ph /\ n e. NN ) -> ( G ` n ) e. ZZ ) | 
						
							| 12 |  | nnz |  |-  ( n e. NN -> n e. ZZ ) | 
						
							| 13 | 12 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> n e. ZZ ) | 
						
							| 14 |  | fzfid |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( M ... m ) e. Fin ) | 
						
							| 15 |  | ffun |  |-  ( G : NN --> Z -> Fun G ) | 
						
							| 16 |  | funimacnv |  |-  ( Fun G -> ( G " ( `' G " ( M ... m ) ) ) = ( ( M ... m ) i^i ran G ) ) | 
						
							| 17 | 3 15 16 | 3syl |  |-  ( ph -> ( G " ( `' G " ( M ... m ) ) ) = ( ( M ... m ) i^i ran G ) ) | 
						
							| 18 |  | inss1 |  |-  ( ( M ... m ) i^i ran G ) C_ ( M ... m ) | 
						
							| 19 | 17 18 | eqsstrdi |  |-  ( ph -> ( G " ( `' G " ( M ... m ) ) ) C_ ( M ... m ) ) | 
						
							| 20 | 19 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( G " ( `' G " ( M ... m ) ) ) C_ ( M ... m ) ) | 
						
							| 21 | 14 20 | ssfid |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( G " ( `' G " ( M ... m ) ) ) e. Fin ) | 
						
							| 22 |  | hashcl |  |-  ( ( G " ( `' G " ( M ... m ) ) ) e. Fin -> ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. NN0 ) | 
						
							| 23 |  | nn0z |  |-  ( ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. NN0 -> ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. ZZ ) | 
						
							| 24 | 21 22 23 | 3syl |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. ZZ ) | 
						
							| 25 |  | ssid |  |-  NN C_ NN | 
						
							| 26 | 1 2 3 4 | isercolllem1 |  |-  ( ( ph /\ NN C_ NN ) -> ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) ) | 
						
							| 27 | 25 26 | mpan2 |  |-  ( ph -> ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) ) | 
						
							| 28 |  | ffn |  |-  ( G : NN --> Z -> G Fn NN ) | 
						
							| 29 |  | fnresdm |  |-  ( G Fn NN -> ( G |` NN ) = G ) | 
						
							| 30 |  | isoeq1 |  |-  ( ( G |` NN ) = G -> ( ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) <-> G Isom < , < ( NN , ( G " NN ) ) ) ) | 
						
							| 31 | 3 28 29 30 | 4syl |  |-  ( ph -> ( ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) <-> G Isom < , < ( NN , ( G " NN ) ) ) ) | 
						
							| 32 | 27 31 | mpbid |  |-  ( ph -> G Isom < , < ( NN , ( G " NN ) ) ) | 
						
							| 33 |  | isof1o |  |-  ( G Isom < , < ( NN , ( G " NN ) ) -> G : NN -1-1-onto-> ( G " NN ) ) | 
						
							| 34 |  | f1ocnv |  |-  ( G : NN -1-1-onto-> ( G " NN ) -> `' G : ( G " NN ) -1-1-onto-> NN ) | 
						
							| 35 |  | f1ofun |  |-  ( `' G : ( G " NN ) -1-1-onto-> NN -> Fun `' G ) | 
						
							| 36 | 32 33 34 35 | 4syl |  |-  ( ph -> Fun `' G ) | 
						
							| 37 |  | df-f1 |  |-  ( G : NN -1-1-> Z <-> ( G : NN --> Z /\ Fun `' G ) ) | 
						
							| 38 | 3 36 37 | sylanbrc |  |-  ( ph -> G : NN -1-1-> Z ) | 
						
							| 39 | 38 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> G : NN -1-1-> Z ) | 
						
							| 40 |  | fz1ssnn |  |-  ( 1 ... n ) C_ NN | 
						
							| 41 |  | ovex |  |-  ( 1 ... n ) e. _V | 
						
							| 42 | 41 | f1imaen |  |-  ( ( G : NN -1-1-> Z /\ ( 1 ... n ) C_ NN ) -> ( G " ( 1 ... n ) ) ~~ ( 1 ... n ) ) | 
						
							| 43 | 39 40 42 | sylancl |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( G " ( 1 ... n ) ) ~~ ( 1 ... n ) ) | 
						
							| 44 |  | fzfid |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( 1 ... n ) e. Fin ) | 
						
							| 45 |  | enfii |  |-  ( ( ( 1 ... n ) e. Fin /\ ( G " ( 1 ... n ) ) ~~ ( 1 ... n ) ) -> ( G " ( 1 ... n ) ) e. Fin ) | 
						
							| 46 | 44 43 45 | syl2anc |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( G " ( 1 ... n ) ) e. Fin ) | 
						
							| 47 |  | hashen |  |-  ( ( ( G " ( 1 ... n ) ) e. Fin /\ ( 1 ... n ) e. Fin ) -> ( ( # ` ( G " ( 1 ... n ) ) ) = ( # ` ( 1 ... n ) ) <-> ( G " ( 1 ... n ) ) ~~ ( 1 ... n ) ) ) | 
						
							| 48 | 46 44 47 | syl2anc |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( ( # ` ( G " ( 1 ... n ) ) ) = ( # ` ( 1 ... n ) ) <-> ( G " ( 1 ... n ) ) ~~ ( 1 ... n ) ) ) | 
						
							| 49 | 43 48 | mpbird |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( # ` ( G " ( 1 ... n ) ) ) = ( # ` ( 1 ... n ) ) ) | 
						
							| 50 |  | nnnn0 |  |-  ( n e. NN -> n e. NN0 ) | 
						
							| 51 | 50 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> n e. NN0 ) | 
						
							| 52 |  | hashfz1 |  |-  ( n e. NN0 -> ( # ` ( 1 ... n ) ) = n ) | 
						
							| 53 | 51 52 | syl |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( # ` ( 1 ... n ) ) = n ) | 
						
							| 54 | 49 53 | eqtrd |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( # ` ( G " ( 1 ... n ) ) ) = n ) | 
						
							| 55 |  | elfznn |  |-  ( y e. ( 1 ... n ) -> y e. NN ) | 
						
							| 56 | 55 | adantl |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> y e. NN ) | 
						
							| 57 |  | zssre |  |-  ZZ C_ RR | 
						
							| 58 | 9 57 | sstri |  |-  Z C_ RR | 
						
							| 59 | 3 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> G : NN --> Z ) | 
						
							| 60 |  | ffvelcdm |  |-  ( ( G : NN --> Z /\ y e. NN ) -> ( G ` y ) e. Z ) | 
						
							| 61 | 59 55 60 | syl2an |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` y ) e. Z ) | 
						
							| 62 | 58 61 | sselid |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` y ) e. RR ) | 
						
							| 63 | 10 | ad2antrr |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` n ) e. Z ) | 
						
							| 64 | 58 63 | sselid |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` n ) e. RR ) | 
						
							| 65 |  | eluzelz |  |-  ( m e. ( ZZ>= ` ( G ` n ) ) -> m e. ZZ ) | 
						
							| 66 | 65 | ad2antlr |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> m e. ZZ ) | 
						
							| 67 | 66 | zred |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> m e. RR ) | 
						
							| 68 |  | elfzle2 |  |-  ( y e. ( 1 ... n ) -> y <_ n ) | 
						
							| 69 | 68 | adantl |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> y <_ n ) | 
						
							| 70 | 32 | ad3antrrr |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> G Isom < , < ( NN , ( G " NN ) ) ) | 
						
							| 71 |  | simpllr |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> n e. NN ) | 
						
							| 72 |  | isorel |  |-  ( ( G Isom < , < ( NN , ( G " NN ) ) /\ ( n e. NN /\ y e. NN ) ) -> ( n < y <-> ( G ` n ) < ( G ` y ) ) ) | 
						
							| 73 | 70 71 56 72 | syl12anc |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( n < y <-> ( G ` n ) < ( G ` y ) ) ) | 
						
							| 74 | 73 | notbid |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( -. n < y <-> -. ( G ` n ) < ( G ` y ) ) ) | 
						
							| 75 | 56 | nnred |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> y e. RR ) | 
						
							| 76 | 71 | nnred |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> n e. RR ) | 
						
							| 77 | 75 76 | lenltd |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( y <_ n <-> -. n < y ) ) | 
						
							| 78 | 62 64 | lenltd |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( ( G ` y ) <_ ( G ` n ) <-> -. ( G ` n ) < ( G ` y ) ) ) | 
						
							| 79 | 74 77 78 | 3bitr4d |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( y <_ n <-> ( G ` y ) <_ ( G ` n ) ) ) | 
						
							| 80 | 69 79 | mpbid |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` y ) <_ ( G ` n ) ) | 
						
							| 81 |  | eluzle |  |-  ( m e. ( ZZ>= ` ( G ` n ) ) -> ( G ` n ) <_ m ) | 
						
							| 82 | 81 | ad2antlr |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` n ) <_ m ) | 
						
							| 83 | 62 64 67 80 82 | letrd |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` y ) <_ m ) | 
						
							| 84 | 61 1 | eleqtrdi |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` y ) e. ( ZZ>= ` M ) ) | 
						
							| 85 |  | elfz5 |  |-  ( ( ( G ` y ) e. ( ZZ>= ` M ) /\ m e. ZZ ) -> ( ( G ` y ) e. ( M ... m ) <-> ( G ` y ) <_ m ) ) | 
						
							| 86 | 84 66 85 | syl2anc |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( ( G ` y ) e. ( M ... m ) <-> ( G ` y ) <_ m ) ) | 
						
							| 87 | 83 86 | mpbird |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` y ) e. ( M ... m ) ) | 
						
							| 88 | 59 | ffnd |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> G Fn NN ) | 
						
							| 89 | 88 | adantr |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> G Fn NN ) | 
						
							| 90 |  | elpreima |  |-  ( G Fn NN -> ( y e. ( `' G " ( M ... m ) ) <-> ( y e. NN /\ ( G ` y ) e. ( M ... m ) ) ) ) | 
						
							| 91 | 89 90 | syl |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( y e. ( `' G " ( M ... m ) ) <-> ( y e. NN /\ ( G ` y ) e. ( M ... m ) ) ) ) | 
						
							| 92 | 56 87 91 | mpbir2and |  |-  ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> y e. ( `' G " ( M ... m ) ) ) | 
						
							| 93 | 92 | ex |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( y e. ( 1 ... n ) -> y e. ( `' G " ( M ... m ) ) ) ) | 
						
							| 94 | 93 | ssrdv |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( 1 ... n ) C_ ( `' G " ( M ... m ) ) ) | 
						
							| 95 |  | imass2 |  |-  ( ( 1 ... n ) C_ ( `' G " ( M ... m ) ) -> ( G " ( 1 ... n ) ) C_ ( G " ( `' G " ( M ... m ) ) ) ) | 
						
							| 96 | 94 95 | syl |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( G " ( 1 ... n ) ) C_ ( G " ( `' G " ( M ... m ) ) ) ) | 
						
							| 97 |  | ssdomg |  |-  ( ( G " ( `' G " ( M ... m ) ) ) e. Fin -> ( ( G " ( 1 ... n ) ) C_ ( G " ( `' G " ( M ... m ) ) ) -> ( G " ( 1 ... n ) ) ~<_ ( G " ( `' G " ( M ... m ) ) ) ) ) | 
						
							| 98 | 21 96 97 | sylc |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( G " ( 1 ... n ) ) ~<_ ( G " ( `' G " ( M ... m ) ) ) ) | 
						
							| 99 |  | hashdom |  |-  ( ( ( G " ( 1 ... n ) ) e. Fin /\ ( G " ( `' G " ( M ... m ) ) ) e. Fin ) -> ( ( # ` ( G " ( 1 ... n ) ) ) <_ ( # ` ( G " ( `' G " ( M ... m ) ) ) ) <-> ( G " ( 1 ... n ) ) ~<_ ( G " ( `' G " ( M ... m ) ) ) ) ) | 
						
							| 100 | 46 21 99 | syl2anc |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( ( # ` ( G " ( 1 ... n ) ) ) <_ ( # ` ( G " ( `' G " ( M ... m ) ) ) ) <-> ( G " ( 1 ... n ) ) ~<_ ( G " ( `' G " ( M ... m ) ) ) ) ) | 
						
							| 101 | 98 100 | mpbird |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( # ` ( G " ( 1 ... n ) ) ) <_ ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) | 
						
							| 102 | 54 101 | eqbrtrrd |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> n <_ ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) | 
						
							| 103 |  | eluz2 |  |-  ( ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. ( ZZ>= ` n ) <-> ( n e. ZZ /\ ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. ZZ /\ n <_ ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) ) | 
						
							| 104 | 13 24 102 103 | syl3anbrc |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. ( ZZ>= ` n ) ) | 
						
							| 105 |  | fveq2 |  |-  ( k = ( # ` ( G " ( `' G " ( M ... m ) ) ) ) -> ( seq 1 ( + , H ) ` k ) = ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) ) | 
						
							| 106 | 105 | eleq1d |  |-  ( k = ( # ` ( G " ( `' G " ( M ... m ) ) ) ) -> ( ( seq 1 ( + , H ) ` k ) e. CC <-> ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC ) ) | 
						
							| 107 | 105 | fvoveq1d |  |-  ( k = ( # ` ( G " ( `' G " ( M ... m ) ) ) ) -> ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) = ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) ) | 
						
							| 108 | 107 | breq1d |  |-  ( k = ( # ` ( G " ( `' G " ( M ... m ) ) ) ) -> ( ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x <-> ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) | 
						
							| 109 | 106 108 | anbi12d |  |-  ( k = ( # ` ( G " ( `' G " ( M ... m ) ) ) ) -> ( ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) <-> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) | 
						
							| 110 | 109 | rspcv |  |-  ( ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. ( ZZ>= ` n ) -> ( A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) -> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) | 
						
							| 111 | 104 110 | syl |  |-  ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) -> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) | 
						
							| 112 | 111 | ralrimdva |  |-  ( ( ph /\ n e. NN ) -> ( A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) -> A. m e. ( ZZ>= ` ( G ` n ) ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) | 
						
							| 113 |  | fveq2 |  |-  ( j = ( G ` n ) -> ( ZZ>= ` j ) = ( ZZ>= ` ( G ` n ) ) ) | 
						
							| 114 | 113 | raleqdv |  |-  ( j = ( G ` n ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) <-> A. m e. ( ZZ>= ` ( G ` n ) ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) | 
						
							| 115 | 114 | rspcev |  |-  ( ( ( G ` n ) e. ZZ /\ A. m e. ( ZZ>= ` ( G ` n ) ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) -> E. j e. ZZ A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) | 
						
							| 116 | 11 112 115 | syl6an |  |-  ( ( ph /\ n e. NN ) -> ( A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) -> E. j e. ZZ A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) | 
						
							| 117 | 116 | rexlimdva |  |-  ( ph -> ( E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) -> E. j e. ZZ A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) | 
						
							| 118 |  | 1nn |  |-  1 e. NN | 
						
							| 119 |  | ffvelcdm |  |-  ( ( G : NN --> Z /\ 1 e. NN ) -> ( G ` 1 ) e. Z ) | 
						
							| 120 | 3 118 119 | sylancl |  |-  ( ph -> ( G ` 1 ) e. Z ) | 
						
							| 121 | 120 1 | eleqtrdi |  |-  ( ph -> ( G ` 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 122 |  | eluzelz |  |-  ( ( G ` 1 ) e. ( ZZ>= ` M ) -> ( G ` 1 ) e. ZZ ) | 
						
							| 123 |  | eqid |  |-  ( ZZ>= ` ( G ` 1 ) ) = ( ZZ>= ` ( G ` 1 ) ) | 
						
							| 124 | 123 | rexuz3 |  |-  ( ( G ` 1 ) e. ZZ -> ( E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) <-> E. j e. ZZ A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) | 
						
							| 125 | 121 122 124 | 3syl |  |-  ( ph -> ( E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) <-> E. j e. ZZ A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) | 
						
							| 126 | 117 125 | sylibrd |  |-  ( ph -> ( E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) -> E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) | 
						
							| 127 |  | fzfid |  |-  ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( M ... j ) e. Fin ) | 
						
							| 128 |  | funimacnv |  |-  ( Fun G -> ( G " ( `' G " ( M ... j ) ) ) = ( ( M ... j ) i^i ran G ) ) | 
						
							| 129 | 3 15 128 | 3syl |  |-  ( ph -> ( G " ( `' G " ( M ... j ) ) ) = ( ( M ... j ) i^i ran G ) ) | 
						
							| 130 |  | inss1 |  |-  ( ( M ... j ) i^i ran G ) C_ ( M ... j ) | 
						
							| 131 | 129 130 | eqsstrdi |  |-  ( ph -> ( G " ( `' G " ( M ... j ) ) ) C_ ( M ... j ) ) | 
						
							| 132 | 131 | adantr |  |-  ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... j ) ) ) C_ ( M ... j ) ) | 
						
							| 133 | 127 132 | ssfid |  |-  ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... j ) ) ) e. Fin ) | 
						
							| 134 |  | hashcl |  |-  ( ( G " ( `' G " ( M ... j ) ) ) e. Fin -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. NN0 ) | 
						
							| 135 |  | nn0p1nn |  |-  ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. NN0 -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) e. NN ) | 
						
							| 136 | 133 134 135 | 3syl |  |-  ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) e. NN ) | 
						
							| 137 |  | eluzle |  |-  ( k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) <_ k ) | 
						
							| 138 | 137 | adantl |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) <_ k ) | 
						
							| 139 | 133 | adantr |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G " ( `' G " ( M ... j ) ) ) e. Fin ) | 
						
							| 140 |  | nn0z |  |-  ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. NN0 -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. ZZ ) | 
						
							| 141 | 139 134 140 | 3syl |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. ZZ ) | 
						
							| 142 |  | eluzelz |  |-  ( k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) -> k e. ZZ ) | 
						
							| 143 | 142 | adantl |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> k e. ZZ ) | 
						
							| 144 |  | zltp1le |  |-  ( ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. ZZ /\ k e. ZZ ) -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) < k <-> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) <_ k ) ) | 
						
							| 145 | 141 143 144 | syl2anc |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) < k <-> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) <_ k ) ) | 
						
							| 146 | 138 145 | mpbird |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) < k ) | 
						
							| 147 |  | nn0re |  |-  ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. NN0 -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. RR ) | 
						
							| 148 | 133 134 147 | 3syl |  |-  ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. RR ) | 
						
							| 149 | 148 | adantr |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. RR ) | 
						
							| 150 |  | eluznn |  |-  ( ( ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) e. NN /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> k e. NN ) | 
						
							| 151 | 136 150 | sylan |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> k e. NN ) | 
						
							| 152 | 151 | nnred |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> k e. RR ) | 
						
							| 153 | 149 152 | ltnled |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) < k <-> -. k <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) ) ) | 
						
							| 154 | 146 153 | mpbid |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> -. k <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) ) | 
						
							| 155 |  | fzss2 |  |-  ( j e. ( ZZ>= ` ( G ` k ) ) -> ( M ... ( G ` k ) ) C_ ( M ... j ) ) | 
						
							| 156 |  | imass2 |  |-  ( ( M ... ( G ` k ) ) C_ ( M ... j ) -> ( `' G " ( M ... ( G ` k ) ) ) C_ ( `' G " ( M ... j ) ) ) | 
						
							| 157 |  | imass2 |  |-  ( ( `' G " ( M ... ( G ` k ) ) ) C_ ( `' G " ( M ... j ) ) -> ( G " ( `' G " ( M ... ( G ` k ) ) ) ) C_ ( G " ( `' G " ( M ... j ) ) ) ) | 
						
							| 158 | 155 156 157 | 3syl |  |-  ( j e. ( ZZ>= ` ( G ` k ) ) -> ( G " ( `' G " ( M ... ( G ` k ) ) ) ) C_ ( G " ( `' G " ( M ... j ) ) ) ) | 
						
							| 159 |  | ssdomg |  |-  ( ( G " ( `' G " ( M ... j ) ) ) e. Fin -> ( ( G " ( 1 ... k ) ) C_ ( G " ( `' G " ( M ... j ) ) ) -> ( G " ( 1 ... k ) ) ~<_ ( G " ( `' G " ( M ... j ) ) ) ) ) | 
						
							| 160 | 139 159 | syl |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( G " ( 1 ... k ) ) C_ ( G " ( `' G " ( M ... j ) ) ) -> ( G " ( 1 ... k ) ) ~<_ ( G " ( `' G " ( M ... j ) ) ) ) ) | 
						
							| 161 | 3 | ad2antrr |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> G : NN --> Z ) | 
						
							| 162 | 161 | ffvelcdmda |  |-  ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( G ` x ) e. Z ) | 
						
							| 163 | 162 1 | eleqtrdi |  |-  ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( G ` x ) e. ( ZZ>= ` M ) ) | 
						
							| 164 | 161 151 | ffvelcdmd |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G ` k ) e. Z ) | 
						
							| 165 | 9 164 | sselid |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G ` k ) e. ZZ ) | 
						
							| 166 | 165 | adantr |  |-  ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( G ` k ) e. ZZ ) | 
						
							| 167 |  | elfz5 |  |-  ( ( ( G ` x ) e. ( ZZ>= ` M ) /\ ( G ` k ) e. ZZ ) -> ( ( G ` x ) e. ( M ... ( G ` k ) ) <-> ( G ` x ) <_ ( G ` k ) ) ) | 
						
							| 168 | 163 166 167 | syl2anc |  |-  ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( ( G ` x ) e. ( M ... ( G ` k ) ) <-> ( G ` x ) <_ ( G ` k ) ) ) | 
						
							| 169 | 32 | ad3antrrr |  |-  ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> G Isom < , < ( NN , ( G " NN ) ) ) | 
						
							| 170 |  | nnssre |  |-  NN C_ RR | 
						
							| 171 |  | ressxr |  |-  RR C_ RR* | 
						
							| 172 | 170 171 | sstri |  |-  NN C_ RR* | 
						
							| 173 | 172 | a1i |  |-  ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> NN C_ RR* ) | 
						
							| 174 |  | imassrn |  |-  ( G " NN ) C_ ran G | 
						
							| 175 | 161 | adantr |  |-  ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> G : NN --> Z ) | 
						
							| 176 | 175 | frnd |  |-  ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ran G C_ Z ) | 
						
							| 177 | 176 58 | sstrdi |  |-  ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ran G C_ RR ) | 
						
							| 178 | 174 177 | sstrid |  |-  ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( G " NN ) C_ RR ) | 
						
							| 179 | 178 171 | sstrdi |  |-  ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( G " NN ) C_ RR* ) | 
						
							| 180 |  | simpr |  |-  ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> x e. NN ) | 
						
							| 181 | 151 | adantr |  |-  ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> k e. NN ) | 
						
							| 182 |  | leisorel |  |-  ( ( G Isom < , < ( NN , ( G " NN ) ) /\ ( NN C_ RR* /\ ( G " NN ) C_ RR* ) /\ ( x e. NN /\ k e. NN ) ) -> ( x <_ k <-> ( G ` x ) <_ ( G ` k ) ) ) | 
						
							| 183 | 169 173 179 180 181 182 | syl122anc |  |-  ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( x <_ k <-> ( G ` x ) <_ ( G ` k ) ) ) | 
						
							| 184 | 168 183 | bitr4d |  |-  ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( ( G ` x ) e. ( M ... ( G ` k ) ) <-> x <_ k ) ) | 
						
							| 185 | 184 | pm5.32da |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( x e. NN /\ ( G ` x ) e. ( M ... ( G ` k ) ) ) <-> ( x e. NN /\ x <_ k ) ) ) | 
						
							| 186 |  | elpreima |  |-  ( G Fn NN -> ( x e. ( `' G " ( M ... ( G ` k ) ) ) <-> ( x e. NN /\ ( G ` x ) e. ( M ... ( G ` k ) ) ) ) ) | 
						
							| 187 | 161 28 186 | 3syl |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( x e. ( `' G " ( M ... ( G ` k ) ) ) <-> ( x e. NN /\ ( G ` x ) e. ( M ... ( G ` k ) ) ) ) ) | 
						
							| 188 |  | fznn |  |-  ( k e. ZZ -> ( x e. ( 1 ... k ) <-> ( x e. NN /\ x <_ k ) ) ) | 
						
							| 189 | 143 188 | syl |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( x e. ( 1 ... k ) <-> ( x e. NN /\ x <_ k ) ) ) | 
						
							| 190 | 185 187 189 | 3bitr4d |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( x e. ( `' G " ( M ... ( G ` k ) ) ) <-> x e. ( 1 ... k ) ) ) | 
						
							| 191 | 190 | eqrdv |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( `' G " ( M ... ( G ` k ) ) ) = ( 1 ... k ) ) | 
						
							| 192 | 191 | imaeq2d |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G " ( `' G " ( M ... ( G ` k ) ) ) ) = ( G " ( 1 ... k ) ) ) | 
						
							| 193 | 192 | sseq1d |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( G " ( `' G " ( M ... ( G ` k ) ) ) ) C_ ( G " ( `' G " ( M ... j ) ) ) <-> ( G " ( 1 ... k ) ) C_ ( G " ( `' G " ( M ... j ) ) ) ) ) | 
						
							| 194 | 38 | ad2antrr |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> G : NN -1-1-> Z ) | 
						
							| 195 |  | fz1ssnn |  |-  ( 1 ... k ) C_ NN | 
						
							| 196 |  | ovex |  |-  ( 1 ... k ) e. _V | 
						
							| 197 | 196 | f1imaen |  |-  ( ( G : NN -1-1-> Z /\ ( 1 ... k ) C_ NN ) -> ( G " ( 1 ... k ) ) ~~ ( 1 ... k ) ) | 
						
							| 198 | 194 195 197 | sylancl |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G " ( 1 ... k ) ) ~~ ( 1 ... k ) ) | 
						
							| 199 |  | fzfid |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( 1 ... k ) e. Fin ) | 
						
							| 200 |  | enfii |  |-  ( ( ( 1 ... k ) e. Fin /\ ( G " ( 1 ... k ) ) ~~ ( 1 ... k ) ) -> ( G " ( 1 ... k ) ) e. Fin ) | 
						
							| 201 | 199 198 200 | syl2anc |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G " ( 1 ... k ) ) e. Fin ) | 
						
							| 202 |  | hashen |  |-  ( ( ( G " ( 1 ... k ) ) e. Fin /\ ( 1 ... k ) e. Fin ) -> ( ( # ` ( G " ( 1 ... k ) ) ) = ( # ` ( 1 ... k ) ) <-> ( G " ( 1 ... k ) ) ~~ ( 1 ... k ) ) ) | 
						
							| 203 | 201 199 202 | syl2anc |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( # ` ( G " ( 1 ... k ) ) ) = ( # ` ( 1 ... k ) ) <-> ( G " ( 1 ... k ) ) ~~ ( 1 ... k ) ) ) | 
						
							| 204 | 198 203 | mpbird |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( 1 ... k ) ) ) = ( # ` ( 1 ... k ) ) ) | 
						
							| 205 |  | nnnn0 |  |-  ( k e. NN -> k e. NN0 ) | 
						
							| 206 |  | hashfz1 |  |-  ( k e. NN0 -> ( # ` ( 1 ... k ) ) = k ) | 
						
							| 207 | 151 205 206 | 3syl |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( 1 ... k ) ) = k ) | 
						
							| 208 | 204 207 | eqtrd |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( 1 ... k ) ) ) = k ) | 
						
							| 209 | 208 | breq1d |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( # ` ( G " ( 1 ... k ) ) ) <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) <-> k <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) ) ) | 
						
							| 210 |  | hashdom |  |-  ( ( ( G " ( 1 ... k ) ) e. Fin /\ ( G " ( `' G " ( M ... j ) ) ) e. Fin ) -> ( ( # ` ( G " ( 1 ... k ) ) ) <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) <-> ( G " ( 1 ... k ) ) ~<_ ( G " ( `' G " ( M ... j ) ) ) ) ) | 
						
							| 211 | 201 139 210 | syl2anc |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( # ` ( G " ( 1 ... k ) ) ) <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) <-> ( G " ( 1 ... k ) ) ~<_ ( G " ( `' G " ( M ... j ) ) ) ) ) | 
						
							| 212 | 209 211 | bitr3d |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( k <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) <-> ( G " ( 1 ... k ) ) ~<_ ( G " ( `' G " ( M ... j ) ) ) ) ) | 
						
							| 213 | 160 193 212 | 3imtr4d |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( G " ( `' G " ( M ... ( G ` k ) ) ) ) C_ ( G " ( `' G " ( M ... j ) ) ) -> k <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) ) ) | 
						
							| 214 | 158 213 | syl5 |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( j e. ( ZZ>= ` ( G ` k ) ) -> k <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) ) ) | 
						
							| 215 | 154 214 | mtod |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> -. j e. ( ZZ>= ` ( G ` k ) ) ) | 
						
							| 216 |  | eluzelz |  |-  ( j e. ( ZZ>= ` ( G ` 1 ) ) -> j e. ZZ ) | 
						
							| 217 | 216 | ad2antlr |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> j e. ZZ ) | 
						
							| 218 |  | uztric |  |-  ( ( ( G ` k ) e. ZZ /\ j e. ZZ ) -> ( j e. ( ZZ>= ` ( G ` k ) ) \/ ( G ` k ) e. ( ZZ>= ` j ) ) ) | 
						
							| 219 | 165 217 218 | syl2anc |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( j e. ( ZZ>= ` ( G ` k ) ) \/ ( G ` k ) e. ( ZZ>= ` j ) ) ) | 
						
							| 220 | 219 | ord |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( -. j e. ( ZZ>= ` ( G ` k ) ) -> ( G ` k ) e. ( ZZ>= ` j ) ) ) | 
						
							| 221 | 215 220 | mpd |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G ` k ) e. ( ZZ>= ` j ) ) | 
						
							| 222 |  | oveq2 |  |-  ( m = ( G ` k ) -> ( M ... m ) = ( M ... ( G ` k ) ) ) | 
						
							| 223 | 222 | imaeq2d |  |-  ( m = ( G ` k ) -> ( `' G " ( M ... m ) ) = ( `' G " ( M ... ( G ` k ) ) ) ) | 
						
							| 224 | 223 | imaeq2d |  |-  ( m = ( G ` k ) -> ( G " ( `' G " ( M ... m ) ) ) = ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) | 
						
							| 225 | 224 | fveq2d |  |-  ( m = ( G ` k ) -> ( # ` ( G " ( `' G " ( M ... m ) ) ) ) = ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) | 
						
							| 226 | 225 | fveq2d |  |-  ( m = ( G ` k ) -> ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) = ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) ) | 
						
							| 227 | 226 | eleq1d |  |-  ( m = ( G ` k ) -> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC <-> ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) e. CC ) ) | 
						
							| 228 | 226 | fvoveq1d |  |-  ( m = ( G ` k ) -> ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) = ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) ) | 
						
							| 229 | 228 | breq1d |  |-  ( m = ( G ` k ) -> ( ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x <-> ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) < x ) ) | 
						
							| 230 | 227 229 | anbi12d |  |-  ( m = ( G ` k ) -> ( ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) <-> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) < x ) ) ) | 
						
							| 231 | 230 | rspcv |  |-  ( ( G ` k ) e. ( ZZ>= ` j ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) -> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) < x ) ) ) | 
						
							| 232 | 221 231 | syl |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) -> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) < x ) ) ) | 
						
							| 233 | 192 | fveq2d |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) = ( # ` ( G " ( 1 ... k ) ) ) ) | 
						
							| 234 | 233 208 | eqtrd |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) = k ) | 
						
							| 235 | 234 | fveq2d |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) = ( seq 1 ( + , H ) ` k ) ) | 
						
							| 236 | 235 | eleq1d |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) e. CC <-> ( seq 1 ( + , H ) ` k ) e. CC ) ) | 
						
							| 237 | 235 | fvoveq1d |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) = ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) ) | 
						
							| 238 | 237 | breq1d |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) < x <-> ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) | 
						
							| 239 | 236 238 | anbi12d |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) < x ) <-> ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) | 
						
							| 240 | 232 239 | sylibd |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) -> ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) | 
						
							| 241 | 240 | ralrimdva |  |-  ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) -> A. k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) | 
						
							| 242 |  | fveq2 |  |-  ( n = ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) -> ( ZZ>= ` n ) = ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) | 
						
							| 243 | 242 | raleqdv |  |-  ( n = ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) -> ( A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) <-> A. k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) | 
						
							| 244 | 243 | rspcev |  |-  ( ( ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) e. NN /\ A. k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) -> E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) | 
						
							| 245 | 136 241 244 | syl6an |  |-  ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) -> E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) | 
						
							| 246 | 245 | rexlimdva |  |-  ( ph -> ( E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) -> E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) | 
						
							| 247 | 126 246 | impbid |  |-  ( ph -> ( E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) <-> E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) | 
						
							| 248 | 247 | ralbidv |  |-  ( ph -> ( A. x e. RR+ E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) <-> A. x e. RR+ E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) | 
						
							| 249 | 248 | anbi2d |  |-  ( ph -> ( ( A e. CC /\ A. x e. RR+ E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) <-> ( A e. CC /\ A. x e. RR+ E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) ) | 
						
							| 250 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 251 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 252 |  | seqex |  |-  seq 1 ( + , H ) e. _V | 
						
							| 253 | 252 | a1i |  |-  ( ph -> seq 1 ( + , H ) e. _V ) | 
						
							| 254 |  | eqidd |  |-  ( ( ph /\ k e. NN ) -> ( seq 1 ( + , H ) ` k ) = ( seq 1 ( + , H ) ` k ) ) | 
						
							| 255 | 250 251 253 254 | clim2 |  |-  ( ph -> ( seq 1 ( + , H ) ~~> A <-> ( A e. CC /\ A. x e. RR+ E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) ) | 
						
							| 256 | 121 122 | syl |  |-  ( ph -> ( G ` 1 ) e. ZZ ) | 
						
							| 257 |  | seqex |  |-  seq M ( + , F ) e. _V | 
						
							| 258 | 257 | a1i |  |-  ( ph -> seq M ( + , F ) e. _V ) | 
						
							| 259 | 1 2 3 4 5 6 7 | isercolllem3 |  |-  ( ( ph /\ m e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( seq M ( + , F ) ` m ) = ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) ) | 
						
							| 260 | 123 256 258 259 | clim2 |  |-  ( ph -> ( seq M ( + , F ) ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) ) | 
						
							| 261 | 249 255 260 | 3bitr4d |  |-  ( ph -> ( seq 1 ( + , H ) ~~> A <-> seq M ( + , F ) ~~> A ) ) |