Step |
Hyp |
Ref |
Expression |
1 |
|
isercoll2.z |
|- Z = ( ZZ>= ` M ) |
2 |
|
isercoll2.w |
|- W = ( ZZ>= ` N ) |
3 |
|
isercoll2.m |
|- ( ph -> M e. ZZ ) |
4 |
|
isercoll2.n |
|- ( ph -> N e. ZZ ) |
5 |
|
isercoll2.g |
|- ( ph -> G : Z --> W ) |
6 |
|
isercoll2.i |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) < ( G ` ( k + 1 ) ) ) |
7 |
|
isercoll2.0 |
|- ( ( ph /\ n e. ( W \ ran G ) ) -> ( F ` n ) = 0 ) |
8 |
|
isercoll2.f |
|- ( ( ph /\ n e. W ) -> ( F ` n ) e. CC ) |
9 |
|
isercoll2.h |
|- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( F ` ( G ` k ) ) ) |
10 |
|
1z |
|- 1 e. ZZ |
11 |
|
zsubcl |
|- ( ( 1 e. ZZ /\ M e. ZZ ) -> ( 1 - M ) e. ZZ ) |
12 |
10 3 11
|
sylancr |
|- ( ph -> ( 1 - M ) e. ZZ ) |
13 |
|
seqex |
|- seq M ( + , H ) e. _V |
14 |
13
|
a1i |
|- ( ph -> seq M ( + , H ) e. _V ) |
15 |
|
seqex |
|- seq 1 ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) e. _V |
16 |
15
|
a1i |
|- ( ph -> seq 1 ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) e. _V ) |
17 |
|
simpr |
|- ( ( ph /\ k e. Z ) -> k e. Z ) |
18 |
17 1
|
eleqtrdi |
|- ( ( ph /\ k e. Z ) -> k e. ( ZZ>= ` M ) ) |
19 |
12
|
adantr |
|- ( ( ph /\ k e. Z ) -> ( 1 - M ) e. ZZ ) |
20 |
|
simpl |
|- ( ( ph /\ k e. Z ) -> ph ) |
21 |
|
elfzuz |
|- ( j e. ( M ... k ) -> j e. ( ZZ>= ` M ) ) |
22 |
21 1
|
eleqtrrdi |
|- ( j e. ( M ... k ) -> j e. Z ) |
23 |
|
simpr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
24 |
23 1
|
eleqtrdi |
|- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
25 |
|
eluzelz |
|- ( j e. ( ZZ>= ` M ) -> j e. ZZ ) |
26 |
24 25
|
syl |
|- ( ( ph /\ j e. Z ) -> j e. ZZ ) |
27 |
26
|
zcnd |
|- ( ( ph /\ j e. Z ) -> j e. CC ) |
28 |
3
|
zcnd |
|- ( ph -> M e. CC ) |
29 |
28
|
adantr |
|- ( ( ph /\ j e. Z ) -> M e. CC ) |
30 |
|
1cnd |
|- ( ( ph /\ j e. Z ) -> 1 e. CC ) |
31 |
27 29 30
|
subadd23d |
|- ( ( ph /\ j e. Z ) -> ( ( j - M ) + 1 ) = ( j + ( 1 - M ) ) ) |
32 |
|
uznn0sub |
|- ( j e. ( ZZ>= ` M ) -> ( j - M ) e. NN0 ) |
33 |
24 32
|
syl |
|- ( ( ph /\ j e. Z ) -> ( j - M ) e. NN0 ) |
34 |
|
nn0p1nn |
|- ( ( j - M ) e. NN0 -> ( ( j - M ) + 1 ) e. NN ) |
35 |
33 34
|
syl |
|- ( ( ph /\ j e. Z ) -> ( ( j - M ) + 1 ) e. NN ) |
36 |
31 35
|
eqeltrrd |
|- ( ( ph /\ j e. Z ) -> ( j + ( 1 - M ) ) e. NN ) |
37 |
|
oveq1 |
|- ( x = ( j + ( 1 - M ) ) -> ( x - 1 ) = ( ( j + ( 1 - M ) ) - 1 ) ) |
38 |
37
|
oveq2d |
|- ( x = ( j + ( 1 - M ) ) -> ( M + ( x - 1 ) ) = ( M + ( ( j + ( 1 - M ) ) - 1 ) ) ) |
39 |
38
|
fveq2d |
|- ( x = ( j + ( 1 - M ) ) -> ( H ` ( M + ( x - 1 ) ) ) = ( H ` ( M + ( ( j + ( 1 - M ) ) - 1 ) ) ) ) |
40 |
|
eqid |
|- ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) = ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) |
41 |
|
fvex |
|- ( H ` ( M + ( ( j + ( 1 - M ) ) - 1 ) ) ) e. _V |
42 |
39 40 41
|
fvmpt |
|- ( ( j + ( 1 - M ) ) e. NN -> ( ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ` ( j + ( 1 - M ) ) ) = ( H ` ( M + ( ( j + ( 1 - M ) ) - 1 ) ) ) ) |
43 |
36 42
|
syl |
|- ( ( ph /\ j e. Z ) -> ( ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ` ( j + ( 1 - M ) ) ) = ( H ` ( M + ( ( j + ( 1 - M ) ) - 1 ) ) ) ) |
44 |
31
|
oveq1d |
|- ( ( ph /\ j e. Z ) -> ( ( ( j - M ) + 1 ) - 1 ) = ( ( j + ( 1 - M ) ) - 1 ) ) |
45 |
33
|
nn0cnd |
|- ( ( ph /\ j e. Z ) -> ( j - M ) e. CC ) |
46 |
|
ax-1cn |
|- 1 e. CC |
47 |
|
pncan |
|- ( ( ( j - M ) e. CC /\ 1 e. CC ) -> ( ( ( j - M ) + 1 ) - 1 ) = ( j - M ) ) |
48 |
45 46 47
|
sylancl |
|- ( ( ph /\ j e. Z ) -> ( ( ( j - M ) + 1 ) - 1 ) = ( j - M ) ) |
49 |
44 48
|
eqtr3d |
|- ( ( ph /\ j e. Z ) -> ( ( j + ( 1 - M ) ) - 1 ) = ( j - M ) ) |
50 |
49
|
oveq2d |
|- ( ( ph /\ j e. Z ) -> ( M + ( ( j + ( 1 - M ) ) - 1 ) ) = ( M + ( j - M ) ) ) |
51 |
29 27
|
pncan3d |
|- ( ( ph /\ j e. Z ) -> ( M + ( j - M ) ) = j ) |
52 |
50 51
|
eqtrd |
|- ( ( ph /\ j e. Z ) -> ( M + ( ( j + ( 1 - M ) ) - 1 ) ) = j ) |
53 |
52
|
fveq2d |
|- ( ( ph /\ j e. Z ) -> ( H ` ( M + ( ( j + ( 1 - M ) ) - 1 ) ) ) = ( H ` j ) ) |
54 |
43 53
|
eqtr2d |
|- ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ` ( j + ( 1 - M ) ) ) ) |
55 |
20 22 54
|
syl2an |
|- ( ( ( ph /\ k e. Z ) /\ j e. ( M ... k ) ) -> ( H ` j ) = ( ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ` ( j + ( 1 - M ) ) ) ) |
56 |
18 19 55
|
seqshft2 |
|- ( ( ph /\ k e. Z ) -> ( seq M ( + , H ) ` k ) = ( seq ( M + ( 1 - M ) ) ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) ` ( k + ( 1 - M ) ) ) ) |
57 |
28
|
adantr |
|- ( ( ph /\ k e. Z ) -> M e. CC ) |
58 |
|
pncan3 |
|- ( ( M e. CC /\ 1 e. CC ) -> ( M + ( 1 - M ) ) = 1 ) |
59 |
57 46 58
|
sylancl |
|- ( ( ph /\ k e. Z ) -> ( M + ( 1 - M ) ) = 1 ) |
60 |
59
|
seqeq1d |
|- ( ( ph /\ k e. Z ) -> seq ( M + ( 1 - M ) ) ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) = seq 1 ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) ) |
61 |
60
|
fveq1d |
|- ( ( ph /\ k e. Z ) -> ( seq ( M + ( 1 - M ) ) ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) ` ( k + ( 1 - M ) ) ) = ( seq 1 ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) ` ( k + ( 1 - M ) ) ) ) |
62 |
56 61
|
eqtr2d |
|- ( ( ph /\ k e. Z ) -> ( seq 1 ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) ` ( k + ( 1 - M ) ) ) = ( seq M ( + , H ) ` k ) ) |
63 |
1 3 12 14 16 62
|
climshft2 |
|- ( ph -> ( seq M ( + , H ) ~~> A <-> seq 1 ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) ~~> A ) ) |
64 |
5
|
adantr |
|- ( ( ph /\ x e. NN ) -> G : Z --> W ) |
65 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
66 |
3 65
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
67 |
|
nnm1nn0 |
|- ( x e. NN -> ( x - 1 ) e. NN0 ) |
68 |
|
uzaddcl |
|- ( ( M e. ( ZZ>= ` M ) /\ ( x - 1 ) e. NN0 ) -> ( M + ( x - 1 ) ) e. ( ZZ>= ` M ) ) |
69 |
66 67 68
|
syl2an |
|- ( ( ph /\ x e. NN ) -> ( M + ( x - 1 ) ) e. ( ZZ>= ` M ) ) |
70 |
69 1
|
eleqtrrdi |
|- ( ( ph /\ x e. NN ) -> ( M + ( x - 1 ) ) e. Z ) |
71 |
64 70
|
ffvelrnd |
|- ( ( ph /\ x e. NN ) -> ( G ` ( M + ( x - 1 ) ) ) e. W ) |
72 |
71
|
fmpttd |
|- ( ph -> ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) : NN --> W ) |
73 |
|
fveq2 |
|- ( k = ( M + ( j - 1 ) ) -> ( G ` k ) = ( G ` ( M + ( j - 1 ) ) ) ) |
74 |
|
fvoveq1 |
|- ( k = ( M + ( j - 1 ) ) -> ( G ` ( k + 1 ) ) = ( G ` ( ( M + ( j - 1 ) ) + 1 ) ) ) |
75 |
73 74
|
breq12d |
|- ( k = ( M + ( j - 1 ) ) -> ( ( G ` k ) < ( G ` ( k + 1 ) ) <-> ( G ` ( M + ( j - 1 ) ) ) < ( G ` ( ( M + ( j - 1 ) ) + 1 ) ) ) ) |
76 |
6
|
ralrimiva |
|- ( ph -> A. k e. Z ( G ` k ) < ( G ` ( k + 1 ) ) ) |
77 |
76
|
adantr |
|- ( ( ph /\ j e. NN ) -> A. k e. Z ( G ` k ) < ( G ` ( k + 1 ) ) ) |
78 |
|
nnm1nn0 |
|- ( j e. NN -> ( j - 1 ) e. NN0 ) |
79 |
|
uzaddcl |
|- ( ( M e. ( ZZ>= ` M ) /\ ( j - 1 ) e. NN0 ) -> ( M + ( j - 1 ) ) e. ( ZZ>= ` M ) ) |
80 |
66 78 79
|
syl2an |
|- ( ( ph /\ j e. NN ) -> ( M + ( j - 1 ) ) e. ( ZZ>= ` M ) ) |
81 |
80 1
|
eleqtrrdi |
|- ( ( ph /\ j e. NN ) -> ( M + ( j - 1 ) ) e. Z ) |
82 |
75 77 81
|
rspcdva |
|- ( ( ph /\ j e. NN ) -> ( G ` ( M + ( j - 1 ) ) ) < ( G ` ( ( M + ( j - 1 ) ) + 1 ) ) ) |
83 |
|
nncn |
|- ( j e. NN -> j e. CC ) |
84 |
83
|
adantl |
|- ( ( ph /\ j e. NN ) -> j e. CC ) |
85 |
|
1cnd |
|- ( ( ph /\ j e. NN ) -> 1 e. CC ) |
86 |
84 85 85
|
addsubd |
|- ( ( ph /\ j e. NN ) -> ( ( j + 1 ) - 1 ) = ( ( j - 1 ) + 1 ) ) |
87 |
86
|
oveq2d |
|- ( ( ph /\ j e. NN ) -> ( M + ( ( j + 1 ) - 1 ) ) = ( M + ( ( j - 1 ) + 1 ) ) ) |
88 |
28
|
adantr |
|- ( ( ph /\ j e. NN ) -> M e. CC ) |
89 |
78
|
adantl |
|- ( ( ph /\ j e. NN ) -> ( j - 1 ) e. NN0 ) |
90 |
89
|
nn0cnd |
|- ( ( ph /\ j e. NN ) -> ( j - 1 ) e. CC ) |
91 |
88 90 85
|
addassd |
|- ( ( ph /\ j e. NN ) -> ( ( M + ( j - 1 ) ) + 1 ) = ( M + ( ( j - 1 ) + 1 ) ) ) |
92 |
87 91
|
eqtr4d |
|- ( ( ph /\ j e. NN ) -> ( M + ( ( j + 1 ) - 1 ) ) = ( ( M + ( j - 1 ) ) + 1 ) ) |
93 |
92
|
fveq2d |
|- ( ( ph /\ j e. NN ) -> ( G ` ( M + ( ( j + 1 ) - 1 ) ) ) = ( G ` ( ( M + ( j - 1 ) ) + 1 ) ) ) |
94 |
82 93
|
breqtrrd |
|- ( ( ph /\ j e. NN ) -> ( G ` ( M + ( j - 1 ) ) ) < ( G ` ( M + ( ( j + 1 ) - 1 ) ) ) ) |
95 |
|
oveq1 |
|- ( x = j -> ( x - 1 ) = ( j - 1 ) ) |
96 |
95
|
oveq2d |
|- ( x = j -> ( M + ( x - 1 ) ) = ( M + ( j - 1 ) ) ) |
97 |
96
|
fveq2d |
|- ( x = j -> ( G ` ( M + ( x - 1 ) ) ) = ( G ` ( M + ( j - 1 ) ) ) ) |
98 |
|
eqid |
|- ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) = ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) |
99 |
|
fvex |
|- ( G ` ( M + ( j - 1 ) ) ) e. _V |
100 |
97 98 99
|
fvmpt |
|- ( j e. NN -> ( ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ` j ) = ( G ` ( M + ( j - 1 ) ) ) ) |
101 |
100
|
adantl |
|- ( ( ph /\ j e. NN ) -> ( ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ` j ) = ( G ` ( M + ( j - 1 ) ) ) ) |
102 |
|
peano2nn |
|- ( j e. NN -> ( j + 1 ) e. NN ) |
103 |
102
|
adantl |
|- ( ( ph /\ j e. NN ) -> ( j + 1 ) e. NN ) |
104 |
|
oveq1 |
|- ( x = ( j + 1 ) -> ( x - 1 ) = ( ( j + 1 ) - 1 ) ) |
105 |
104
|
oveq2d |
|- ( x = ( j + 1 ) -> ( M + ( x - 1 ) ) = ( M + ( ( j + 1 ) - 1 ) ) ) |
106 |
105
|
fveq2d |
|- ( x = ( j + 1 ) -> ( G ` ( M + ( x - 1 ) ) ) = ( G ` ( M + ( ( j + 1 ) - 1 ) ) ) ) |
107 |
|
fvex |
|- ( G ` ( M + ( ( j + 1 ) - 1 ) ) ) e. _V |
108 |
106 98 107
|
fvmpt |
|- ( ( j + 1 ) e. NN -> ( ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ` ( j + 1 ) ) = ( G ` ( M + ( ( j + 1 ) - 1 ) ) ) ) |
109 |
103 108
|
syl |
|- ( ( ph /\ j e. NN ) -> ( ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ` ( j + 1 ) ) = ( G ` ( M + ( ( j + 1 ) - 1 ) ) ) ) |
110 |
94 101 109
|
3brtr4d |
|- ( ( ph /\ j e. NN ) -> ( ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ` j ) < ( ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ` ( j + 1 ) ) ) |
111 |
5
|
ffnd |
|- ( ph -> G Fn Z ) |
112 |
|
uznn0sub |
|- ( k e. ( ZZ>= ` M ) -> ( k - M ) e. NN0 ) |
113 |
18 112
|
syl |
|- ( ( ph /\ k e. Z ) -> ( k - M ) e. NN0 ) |
114 |
|
nn0p1nn |
|- ( ( k - M ) e. NN0 -> ( ( k - M ) + 1 ) e. NN ) |
115 |
113 114
|
syl |
|- ( ( ph /\ k e. Z ) -> ( ( k - M ) + 1 ) e. NN ) |
116 |
113
|
nn0cnd |
|- ( ( ph /\ k e. Z ) -> ( k - M ) e. CC ) |
117 |
|
pncan |
|- ( ( ( k - M ) e. CC /\ 1 e. CC ) -> ( ( ( k - M ) + 1 ) - 1 ) = ( k - M ) ) |
118 |
116 46 117
|
sylancl |
|- ( ( ph /\ k e. Z ) -> ( ( ( k - M ) + 1 ) - 1 ) = ( k - M ) ) |
119 |
118
|
oveq2d |
|- ( ( ph /\ k e. Z ) -> ( M + ( ( ( k - M ) + 1 ) - 1 ) ) = ( M + ( k - M ) ) ) |
120 |
|
eluzelz |
|- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
121 |
120 1
|
eleq2s |
|- ( k e. Z -> k e. ZZ ) |
122 |
121
|
zcnd |
|- ( k e. Z -> k e. CC ) |
123 |
|
pncan3 |
|- ( ( M e. CC /\ k e. CC ) -> ( M + ( k - M ) ) = k ) |
124 |
28 122 123
|
syl2an |
|- ( ( ph /\ k e. Z ) -> ( M + ( k - M ) ) = k ) |
125 |
119 124
|
eqtr2d |
|- ( ( ph /\ k e. Z ) -> k = ( M + ( ( ( k - M ) + 1 ) - 1 ) ) ) |
126 |
125
|
fveq2d |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( G ` ( M + ( ( ( k - M ) + 1 ) - 1 ) ) ) ) |
127 |
|
oveq1 |
|- ( x = ( ( k - M ) + 1 ) -> ( x - 1 ) = ( ( ( k - M ) + 1 ) - 1 ) ) |
128 |
127
|
oveq2d |
|- ( x = ( ( k - M ) + 1 ) -> ( M + ( x - 1 ) ) = ( M + ( ( ( k - M ) + 1 ) - 1 ) ) ) |
129 |
128
|
fveq2d |
|- ( x = ( ( k - M ) + 1 ) -> ( G ` ( M + ( x - 1 ) ) ) = ( G ` ( M + ( ( ( k - M ) + 1 ) - 1 ) ) ) ) |
130 |
129
|
rspceeqv |
|- ( ( ( ( k - M ) + 1 ) e. NN /\ ( G ` k ) = ( G ` ( M + ( ( ( k - M ) + 1 ) - 1 ) ) ) ) -> E. x e. NN ( G ` k ) = ( G ` ( M + ( x - 1 ) ) ) ) |
131 |
115 126 130
|
syl2anc |
|- ( ( ph /\ k e. Z ) -> E. x e. NN ( G ` k ) = ( G ` ( M + ( x - 1 ) ) ) ) |
132 |
|
fvex |
|- ( G ` k ) e. _V |
133 |
98
|
elrnmpt |
|- ( ( G ` k ) e. _V -> ( ( G ` k ) e. ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) <-> E. x e. NN ( G ` k ) = ( G ` ( M + ( x - 1 ) ) ) ) ) |
134 |
132 133
|
ax-mp |
|- ( ( G ` k ) e. ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) <-> E. x e. NN ( G ` k ) = ( G ` ( M + ( x - 1 ) ) ) ) |
135 |
131 134
|
sylibr |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ) |
136 |
135
|
ralrimiva |
|- ( ph -> A. k e. Z ( G ` k ) e. ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ) |
137 |
|
ffnfv |
|- ( G : Z --> ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) <-> ( G Fn Z /\ A. k e. Z ( G ` k ) e. ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ) ) |
138 |
111 136 137
|
sylanbrc |
|- ( ph -> G : Z --> ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ) |
139 |
138
|
frnd |
|- ( ph -> ran G C_ ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ) |
140 |
139
|
sscond |
|- ( ph -> ( W \ ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ) C_ ( W \ ran G ) ) |
141 |
140
|
sselda |
|- ( ( ph /\ n e. ( W \ ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ) ) -> n e. ( W \ ran G ) ) |
142 |
141 7
|
syldan |
|- ( ( ph /\ n e. ( W \ ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ) ) -> ( F ` n ) = 0 ) |
143 |
|
fveq2 |
|- ( k = ( M + ( j - 1 ) ) -> ( H ` k ) = ( H ` ( M + ( j - 1 ) ) ) ) |
144 |
73
|
fveq2d |
|- ( k = ( M + ( j - 1 ) ) -> ( F ` ( G ` k ) ) = ( F ` ( G ` ( M + ( j - 1 ) ) ) ) ) |
145 |
143 144
|
eqeq12d |
|- ( k = ( M + ( j - 1 ) ) -> ( ( H ` k ) = ( F ` ( G ` k ) ) <-> ( H ` ( M + ( j - 1 ) ) ) = ( F ` ( G ` ( M + ( j - 1 ) ) ) ) ) ) |
146 |
9
|
ralrimiva |
|- ( ph -> A. k e. Z ( H ` k ) = ( F ` ( G ` k ) ) ) |
147 |
146
|
adantr |
|- ( ( ph /\ j e. NN ) -> A. k e. Z ( H ` k ) = ( F ` ( G ` k ) ) ) |
148 |
145 147 81
|
rspcdva |
|- ( ( ph /\ j e. NN ) -> ( H ` ( M + ( j - 1 ) ) ) = ( F ` ( G ` ( M + ( j - 1 ) ) ) ) ) |
149 |
96
|
fveq2d |
|- ( x = j -> ( H ` ( M + ( x - 1 ) ) ) = ( H ` ( M + ( j - 1 ) ) ) ) |
150 |
|
fvex |
|- ( H ` ( M + ( j - 1 ) ) ) e. _V |
151 |
149 40 150
|
fvmpt |
|- ( j e. NN -> ( ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ` j ) = ( H ` ( M + ( j - 1 ) ) ) ) |
152 |
151
|
adantl |
|- ( ( ph /\ j e. NN ) -> ( ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ` j ) = ( H ` ( M + ( j - 1 ) ) ) ) |
153 |
101
|
fveq2d |
|- ( ( ph /\ j e. NN ) -> ( F ` ( ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ` j ) ) = ( F ` ( G ` ( M + ( j - 1 ) ) ) ) ) |
154 |
148 152 153
|
3eqtr4d |
|- ( ( ph /\ j e. NN ) -> ( ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ` j ) = ( F ` ( ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ` j ) ) ) |
155 |
2 4 72 110 142 8 154
|
isercoll |
|- ( ph -> ( seq 1 ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) ~~> A <-> seq N ( + , F ) ~~> A ) ) |
156 |
63 155
|
bitrd |
|- ( ph -> ( seq M ( + , H ) ~~> A <-> seq N ( + , F ) ~~> A ) ) |