| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isercoll.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | isercoll.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | isercoll.g |  |-  ( ph -> G : NN --> Z ) | 
						
							| 4 |  | isercoll.i |  |-  ( ( ph /\ k e. NN ) -> ( G ` k ) < ( G ` ( k + 1 ) ) ) | 
						
							| 5 |  | elfznn |  |-  ( x e. ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) -> x e. NN ) | 
						
							| 6 | 5 | a1i |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( x e. ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) -> x e. NN ) ) | 
						
							| 7 |  | cnvimass |  |-  ( `' G " ( M ... N ) ) C_ dom G | 
						
							| 8 | 3 | adantr |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> G : NN --> Z ) | 
						
							| 9 | 7 8 | fssdm |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( `' G " ( M ... N ) ) C_ NN ) | 
						
							| 10 | 9 | sseld |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( x e. ( `' G " ( M ... N ) ) -> x e. NN ) ) | 
						
							| 11 |  | id |  |-  ( x e. NN -> x e. NN ) | 
						
							| 12 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 13 | 11 12 | eleqtrdi |  |-  ( x e. NN -> x e. ( ZZ>= ` 1 ) ) | 
						
							| 14 |  | ltso |  |-  < Or RR | 
						
							| 15 | 14 | a1i |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> < Or RR ) | 
						
							| 16 |  | fzfid |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( M ... N ) e. Fin ) | 
						
							| 17 |  | ffun |  |-  ( G : NN --> Z -> Fun G ) | 
						
							| 18 |  | funimacnv |  |-  ( Fun G -> ( G " ( `' G " ( M ... N ) ) ) = ( ( M ... N ) i^i ran G ) ) | 
						
							| 19 | 8 17 18 | 3syl |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... N ) ) ) = ( ( M ... N ) i^i ran G ) ) | 
						
							| 20 |  | inss1 |  |-  ( ( M ... N ) i^i ran G ) C_ ( M ... N ) | 
						
							| 21 | 19 20 | eqsstrdi |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... N ) ) ) C_ ( M ... N ) ) | 
						
							| 22 | 16 21 | ssfid |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... N ) ) ) e. Fin ) | 
						
							| 23 |  | ssid |  |-  NN C_ NN | 
						
							| 24 | 1 2 3 4 | isercolllem1 |  |-  ( ( ph /\ NN C_ NN ) -> ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) ) | 
						
							| 25 | 23 24 | mpan2 |  |-  ( ph -> ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) ) | 
						
							| 26 |  | ffn |  |-  ( G : NN --> Z -> G Fn NN ) | 
						
							| 27 |  | fnresdm |  |-  ( G Fn NN -> ( G |` NN ) = G ) | 
						
							| 28 |  | isoeq1 |  |-  ( ( G |` NN ) = G -> ( ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) <-> G Isom < , < ( NN , ( G " NN ) ) ) ) | 
						
							| 29 | 3 26 27 28 | 4syl |  |-  ( ph -> ( ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) <-> G Isom < , < ( NN , ( G " NN ) ) ) ) | 
						
							| 30 | 25 29 | mpbid |  |-  ( ph -> G Isom < , < ( NN , ( G " NN ) ) ) | 
						
							| 31 |  | isof1o |  |-  ( G Isom < , < ( NN , ( G " NN ) ) -> G : NN -1-1-onto-> ( G " NN ) ) | 
						
							| 32 |  | f1ocnv |  |-  ( G : NN -1-1-onto-> ( G " NN ) -> `' G : ( G " NN ) -1-1-onto-> NN ) | 
						
							| 33 |  | f1ofun |  |-  ( `' G : ( G " NN ) -1-1-onto-> NN -> Fun `' G ) | 
						
							| 34 | 30 31 32 33 | 4syl |  |-  ( ph -> Fun `' G ) | 
						
							| 35 |  | df-f1 |  |-  ( G : NN -1-1-> Z <-> ( G : NN --> Z /\ Fun `' G ) ) | 
						
							| 36 | 3 34 35 | sylanbrc |  |-  ( ph -> G : NN -1-1-> Z ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> G : NN -1-1-> Z ) | 
						
							| 38 |  | nnex |  |-  NN e. _V | 
						
							| 39 |  | ssexg |  |-  ( ( ( `' G " ( M ... N ) ) C_ NN /\ NN e. _V ) -> ( `' G " ( M ... N ) ) e. _V ) | 
						
							| 40 | 9 38 39 | sylancl |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( `' G " ( M ... N ) ) e. _V ) | 
						
							| 41 |  | f1imaeng |  |-  ( ( G : NN -1-1-> Z /\ ( `' G " ( M ... N ) ) C_ NN /\ ( `' G " ( M ... N ) ) e. _V ) -> ( G " ( `' G " ( M ... N ) ) ) ~~ ( `' G " ( M ... N ) ) ) | 
						
							| 42 | 37 9 40 41 | syl3anc |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... N ) ) ) ~~ ( `' G " ( M ... N ) ) ) | 
						
							| 43 | 42 | ensymd |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( `' G " ( M ... N ) ) ~~ ( G " ( `' G " ( M ... N ) ) ) ) | 
						
							| 44 |  | enfii |  |-  ( ( ( G " ( `' G " ( M ... N ) ) ) e. Fin /\ ( `' G " ( M ... N ) ) ~~ ( G " ( `' G " ( M ... N ) ) ) ) -> ( `' G " ( M ... N ) ) e. Fin ) | 
						
							| 45 | 22 43 44 | syl2anc |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( `' G " ( M ... N ) ) e. Fin ) | 
						
							| 46 |  | 1nn |  |-  1 e. NN | 
						
							| 47 | 46 | a1i |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> 1 e. NN ) | 
						
							| 48 |  | ffvelcdm |  |-  ( ( G : NN --> Z /\ 1 e. NN ) -> ( G ` 1 ) e. Z ) | 
						
							| 49 | 3 46 48 | sylancl |  |-  ( ph -> ( G ` 1 ) e. Z ) | 
						
							| 50 | 49 1 | eleqtrdi |  |-  ( ph -> ( G ` 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G ` 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 52 |  | simpr |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> N e. ( ZZ>= ` ( G ` 1 ) ) ) | 
						
							| 53 |  | elfzuzb |  |-  ( ( G ` 1 ) e. ( M ... N ) <-> ( ( G ` 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) ) | 
						
							| 54 | 51 52 53 | sylanbrc |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G ` 1 ) e. ( M ... N ) ) | 
						
							| 55 | 8 | ffnd |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> G Fn NN ) | 
						
							| 56 |  | elpreima |  |-  ( G Fn NN -> ( 1 e. ( `' G " ( M ... N ) ) <-> ( 1 e. NN /\ ( G ` 1 ) e. ( M ... N ) ) ) ) | 
						
							| 57 | 55 56 | syl |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( 1 e. ( `' G " ( M ... N ) ) <-> ( 1 e. NN /\ ( G ` 1 ) e. ( M ... N ) ) ) ) | 
						
							| 58 | 47 54 57 | mpbir2and |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> 1 e. ( `' G " ( M ... N ) ) ) | 
						
							| 59 | 58 | ne0d |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( `' G " ( M ... N ) ) =/= (/) ) | 
						
							| 60 |  | nnssre |  |-  NN C_ RR | 
						
							| 61 | 9 60 | sstrdi |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( `' G " ( M ... N ) ) C_ RR ) | 
						
							| 62 |  | fisupcl |  |-  ( ( < Or RR /\ ( ( `' G " ( M ... N ) ) e. Fin /\ ( `' G " ( M ... N ) ) =/= (/) /\ ( `' G " ( M ... N ) ) C_ RR ) ) -> sup ( ( `' G " ( M ... N ) ) , RR , < ) e. ( `' G " ( M ... N ) ) ) | 
						
							| 63 | 15 45 59 61 62 | syl13anc |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> sup ( ( `' G " ( M ... N ) ) , RR , < ) e. ( `' G " ( M ... N ) ) ) | 
						
							| 64 | 9 63 | sseldd |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> sup ( ( `' G " ( M ... N ) ) , RR , < ) e. NN ) | 
						
							| 65 | 64 | nnzd |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> sup ( ( `' G " ( M ... N ) ) , RR , < ) e. ZZ ) | 
						
							| 66 |  | elfz5 |  |-  ( ( x e. ( ZZ>= ` 1 ) /\ sup ( ( `' G " ( M ... N ) ) , RR , < ) e. ZZ ) -> ( x e. ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <-> x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) | 
						
							| 67 | 13 65 66 | syl2anr |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( x e. ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <-> x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) | 
						
							| 68 |  | elpreima |  |-  ( G Fn NN -> ( sup ( ( `' G " ( M ... N ) ) , RR , < ) e. ( `' G " ( M ... N ) ) <-> ( sup ( ( `' G " ( M ... N ) ) , RR , < ) e. NN /\ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) e. ( M ... N ) ) ) ) | 
						
							| 69 | 55 68 | syl |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( sup ( ( `' G " ( M ... N ) ) , RR , < ) e. ( `' G " ( M ... N ) ) <-> ( sup ( ( `' G " ( M ... N ) ) , RR , < ) e. NN /\ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) e. ( M ... N ) ) ) ) | 
						
							| 70 | 63 69 | mpbid |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( sup ( ( `' G " ( M ... N ) ) , RR , < ) e. NN /\ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) e. ( M ... N ) ) ) | 
						
							| 71 |  | elfzle2 |  |-  ( ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) e. ( M ... N ) -> ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <_ N ) | 
						
							| 72 | 70 71 | simpl2im |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <_ N ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <_ N ) | 
						
							| 74 |  | uzssz |  |-  ( ZZ>= ` M ) C_ ZZ | 
						
							| 75 | 1 74 | eqsstri |  |-  Z C_ ZZ | 
						
							| 76 |  | zssre |  |-  ZZ C_ RR | 
						
							| 77 | 75 76 | sstri |  |-  Z C_ RR | 
						
							| 78 | 8 | ffvelcdmda |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( G ` x ) e. Z ) | 
						
							| 79 | 77 78 | sselid |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( G ` x ) e. RR ) | 
						
							| 80 | 8 64 | ffvelcdmd |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) e. Z ) | 
						
							| 81 | 80 | adantr |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) e. Z ) | 
						
							| 82 | 77 81 | sselid |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) e. RR ) | 
						
							| 83 |  | eluzelz |  |-  ( N e. ( ZZ>= ` ( G ` 1 ) ) -> N e. ZZ ) | 
						
							| 84 | 83 | ad2antlr |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> N e. ZZ ) | 
						
							| 85 | 76 84 | sselid |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> N e. RR ) | 
						
							| 86 |  | letr |  |-  ( ( ( G ` x ) e. RR /\ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) e. RR /\ N e. RR ) -> ( ( ( G ` x ) <_ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) /\ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <_ N ) -> ( G ` x ) <_ N ) ) | 
						
							| 87 | 79 82 85 86 | syl3anc |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( ( ( G ` x ) <_ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) /\ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <_ N ) -> ( G ` x ) <_ N ) ) | 
						
							| 88 | 73 87 | mpan2d |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( ( G ` x ) <_ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) -> ( G ` x ) <_ N ) ) | 
						
							| 89 | 30 | ad2antrr |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> G Isom < , < ( NN , ( G " NN ) ) ) | 
						
							| 90 | 60 | a1i |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> NN C_ RR ) | 
						
							| 91 |  | ressxr |  |-  RR C_ RR* | 
						
							| 92 | 90 91 | sstrdi |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> NN C_ RR* ) | 
						
							| 93 |  | imassrn |  |-  ( G " NN ) C_ ran G | 
						
							| 94 | 3 | ad2antrr |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> G : NN --> Z ) | 
						
							| 95 | 94 | frnd |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ran G C_ Z ) | 
						
							| 96 | 93 95 | sstrid |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( G " NN ) C_ Z ) | 
						
							| 97 | 96 77 | sstrdi |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( G " NN ) C_ RR ) | 
						
							| 98 | 97 91 | sstrdi |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( G " NN ) C_ RR* ) | 
						
							| 99 |  | simpr |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> x e. NN ) | 
						
							| 100 | 64 | adantr |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> sup ( ( `' G " ( M ... N ) ) , RR , < ) e. NN ) | 
						
							| 101 |  | leisorel |  |-  ( ( G Isom < , < ( NN , ( G " NN ) ) /\ ( NN C_ RR* /\ ( G " NN ) C_ RR* ) /\ ( x e. NN /\ sup ( ( `' G " ( M ... N ) ) , RR , < ) e. NN ) ) -> ( x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) <-> ( G ` x ) <_ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) ) | 
						
							| 102 | 89 92 98 99 100 101 | syl122anc |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) <-> ( G ` x ) <_ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) ) | 
						
							| 103 | 78 1 | eleqtrdi |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( G ` x ) e. ( ZZ>= ` M ) ) | 
						
							| 104 |  | elfz5 |  |-  ( ( ( G ` x ) e. ( ZZ>= ` M ) /\ N e. ZZ ) -> ( ( G ` x ) e. ( M ... N ) <-> ( G ` x ) <_ N ) ) | 
						
							| 105 | 103 84 104 | syl2anc |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( ( G ` x ) e. ( M ... N ) <-> ( G ` x ) <_ N ) ) | 
						
							| 106 | 88 102 105 | 3imtr4d |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) -> ( G ` x ) e. ( M ... N ) ) ) | 
						
							| 107 |  | elpreima |  |-  ( G Fn NN -> ( x e. ( `' G " ( M ... N ) ) <-> ( x e. NN /\ ( G ` x ) e. ( M ... N ) ) ) ) | 
						
							| 108 | 107 | baibd |  |-  ( ( G Fn NN /\ x e. NN ) -> ( x e. ( `' G " ( M ... N ) ) <-> ( G ` x ) e. ( M ... N ) ) ) | 
						
							| 109 | 55 108 | sylan |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( x e. ( `' G " ( M ... N ) ) <-> ( G ` x ) e. ( M ... N ) ) ) | 
						
							| 110 | 106 109 | sylibrd |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) -> x e. ( `' G " ( M ... N ) ) ) ) | 
						
							| 111 |  | fimaxre2 |  |-  ( ( ( `' G " ( M ... N ) ) C_ RR /\ ( `' G " ( M ... N ) ) e. Fin ) -> E. x e. RR A. y e. ( `' G " ( M ... N ) ) y <_ x ) | 
						
							| 112 | 61 45 111 | syl2anc |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> E. x e. RR A. y e. ( `' G " ( M ... N ) ) y <_ x ) | 
						
							| 113 |  | suprub |  |-  ( ( ( ( `' G " ( M ... N ) ) C_ RR /\ ( `' G " ( M ... N ) ) =/= (/) /\ E. x e. RR A. y e. ( `' G " ( M ... N ) ) y <_ x ) /\ x e. ( `' G " ( M ... N ) ) ) -> x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) ) | 
						
							| 114 | 113 | ex |  |-  ( ( ( `' G " ( M ... N ) ) C_ RR /\ ( `' G " ( M ... N ) ) =/= (/) /\ E. x e. RR A. y e. ( `' G " ( M ... N ) ) y <_ x ) -> ( x e. ( `' G " ( M ... N ) ) -> x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) | 
						
							| 115 | 61 59 112 114 | syl3anc |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( x e. ( `' G " ( M ... N ) ) -> x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) | 
						
							| 116 | 115 | adantr |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( x e. ( `' G " ( M ... N ) ) -> x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) | 
						
							| 117 | 110 116 | impbid |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) <-> x e. ( `' G " ( M ... N ) ) ) ) | 
						
							| 118 | 67 117 | bitrd |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( x e. ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <-> x e. ( `' G " ( M ... N ) ) ) ) | 
						
							| 119 | 118 | ex |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( x e. NN -> ( x e. ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <-> x e. ( `' G " ( M ... N ) ) ) ) ) | 
						
							| 120 | 6 10 119 | pm5.21ndd |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( x e. ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <-> x e. ( `' G " ( M ... N ) ) ) ) | 
						
							| 121 | 120 | eqrdv |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) = ( `' G " ( M ... N ) ) ) | 
						
							| 122 | 121 | fveq2d |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( # ` ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) = ( # ` ( `' G " ( M ... N ) ) ) ) | 
						
							| 123 | 64 | nnnn0d |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> sup ( ( `' G " ( M ... N ) ) , RR , < ) e. NN0 ) | 
						
							| 124 |  | hashfz1 |  |-  ( sup ( ( `' G " ( M ... N ) ) , RR , < ) e. NN0 -> ( # ` ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) = sup ( ( `' G " ( M ... N ) ) , RR , < ) ) | 
						
							| 125 | 123 124 | syl |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( # ` ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) = sup ( ( `' G " ( M ... N ) ) , RR , < ) ) | 
						
							| 126 |  | hashen |  |-  ( ( ( `' G " ( M ... N ) ) e. Fin /\ ( G " ( `' G " ( M ... N ) ) ) e. Fin ) -> ( ( # ` ( `' G " ( M ... N ) ) ) = ( # ` ( G " ( `' G " ( M ... N ) ) ) ) <-> ( `' G " ( M ... N ) ) ~~ ( G " ( `' G " ( M ... N ) ) ) ) ) | 
						
							| 127 | 45 22 126 | syl2anc |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( ( # ` ( `' G " ( M ... N ) ) ) = ( # ` ( G " ( `' G " ( M ... N ) ) ) ) <-> ( `' G " ( M ... N ) ) ~~ ( G " ( `' G " ( M ... N ) ) ) ) ) | 
						
							| 128 | 43 127 | mpbird |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( # ` ( `' G " ( M ... N ) ) ) = ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) | 
						
							| 129 | 122 125 128 | 3eqtr3d |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> sup ( ( `' G " ( M ... N ) ) , RR , < ) = ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) | 
						
							| 130 | 129 | oveq2d |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) = ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) ) | 
						
							| 131 | 130 121 | eqtr3d |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) = ( `' G " ( M ... N ) ) ) |