| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isercoll.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | isercoll.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | isercoll.g |  |-  ( ph -> G : NN --> Z ) | 
						
							| 4 |  | isercoll.i |  |-  ( ( ph /\ k e. NN ) -> ( G ` k ) < ( G ` ( k + 1 ) ) ) | 
						
							| 5 |  | isercoll.0 |  |-  ( ( ph /\ n e. ( Z \ ran G ) ) -> ( F ` n ) = 0 ) | 
						
							| 6 |  | isercoll.f |  |-  ( ( ph /\ n e. Z ) -> ( F ` n ) e. CC ) | 
						
							| 7 |  | isercoll.h |  |-  ( ( ph /\ k e. NN ) -> ( H ` k ) = ( F ` ( G ` k ) ) ) | 
						
							| 8 |  | addlid |  |-  ( n e. CC -> ( 0 + n ) = n ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ n e. CC ) -> ( 0 + n ) = n ) | 
						
							| 10 |  | addrid |  |-  ( n e. CC -> ( n + 0 ) = n ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ n e. CC ) -> ( n + 0 ) = n ) | 
						
							| 12 |  | addcl |  |-  ( ( n e. CC /\ k e. CC ) -> ( n + k ) e. CC ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ ( n e. CC /\ k e. CC ) ) -> ( n + k ) e. CC ) | 
						
							| 14 |  | 0cnd |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> 0 e. CC ) | 
						
							| 15 |  | cnvimass |  |-  ( `' G " ( M ... N ) ) C_ dom G | 
						
							| 16 | 3 | adantr |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> G : NN --> Z ) | 
						
							| 17 | 15 16 | fssdm |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( `' G " ( M ... N ) ) C_ NN ) | 
						
							| 18 | 1 2 3 4 | isercolllem1 |  |-  ( ( ph /\ ( `' G " ( M ... N ) ) C_ NN ) -> ( G |` ( `' G " ( M ... N ) ) ) Isom < , < ( ( `' G " ( M ... N ) ) , ( G " ( `' G " ( M ... N ) ) ) ) ) | 
						
							| 19 | 17 18 | syldan |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G |` ( `' G " ( M ... N ) ) ) Isom < , < ( ( `' G " ( M ... N ) ) , ( G " ( `' G " ( M ... N ) ) ) ) ) | 
						
							| 20 | 1 2 3 4 | isercolllem2 |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) = ( `' G " ( M ... N ) ) ) | 
						
							| 21 |  | isoeq4 |  |-  ( ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) = ( `' G " ( M ... N ) ) -> ( ( G |` ( `' G " ( M ... N ) ) ) Isom < , < ( ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) , ( G " ( `' G " ( M ... N ) ) ) ) <-> ( G |` ( `' G " ( M ... N ) ) ) Isom < , < ( ( `' G " ( M ... N ) ) , ( G " ( `' G " ( M ... N ) ) ) ) ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( ( G |` ( `' G " ( M ... N ) ) ) Isom < , < ( ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) , ( G " ( `' G " ( M ... N ) ) ) ) <-> ( G |` ( `' G " ( M ... N ) ) ) Isom < , < ( ( `' G " ( M ... N ) ) , ( G " ( `' G " ( M ... N ) ) ) ) ) ) | 
						
							| 23 | 19 22 | mpbird |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G |` ( `' G " ( M ... N ) ) ) Isom < , < ( ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) , ( G " ( `' G " ( M ... N ) ) ) ) ) | 
						
							| 24 | 15 | a1i |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( `' G " ( M ... N ) ) C_ dom G ) | 
						
							| 25 |  | sseqin2 |  |-  ( ( `' G " ( M ... N ) ) C_ dom G <-> ( dom G i^i ( `' G " ( M ... N ) ) ) = ( `' G " ( M ... N ) ) ) | 
						
							| 26 | 24 25 | sylib |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( dom G i^i ( `' G " ( M ... N ) ) ) = ( `' G " ( M ... N ) ) ) | 
						
							| 27 |  | 1nn |  |-  1 e. NN | 
						
							| 28 | 27 | a1i |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> 1 e. NN ) | 
						
							| 29 |  | ffvelcdm |  |-  ( ( G : NN --> Z /\ 1 e. NN ) -> ( G ` 1 ) e. Z ) | 
						
							| 30 | 3 27 29 | sylancl |  |-  ( ph -> ( G ` 1 ) e. Z ) | 
						
							| 31 | 30 1 | eleqtrdi |  |-  ( ph -> ( G ` 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G ` 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 33 |  | simpr |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> N e. ( ZZ>= ` ( G ` 1 ) ) ) | 
						
							| 34 |  | elfzuzb |  |-  ( ( G ` 1 ) e. ( M ... N ) <-> ( ( G ` 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) ) | 
						
							| 35 | 32 33 34 | sylanbrc |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G ` 1 ) e. ( M ... N ) ) | 
						
							| 36 |  | ffn |  |-  ( G : NN --> Z -> G Fn NN ) | 
						
							| 37 |  | elpreima |  |-  ( G Fn NN -> ( 1 e. ( `' G " ( M ... N ) ) <-> ( 1 e. NN /\ ( G ` 1 ) e. ( M ... N ) ) ) ) | 
						
							| 38 | 16 36 37 | 3syl |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( 1 e. ( `' G " ( M ... N ) ) <-> ( 1 e. NN /\ ( G ` 1 ) e. ( M ... N ) ) ) ) | 
						
							| 39 | 28 35 38 | mpbir2and |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> 1 e. ( `' G " ( M ... N ) ) ) | 
						
							| 40 | 39 | ne0d |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( `' G " ( M ... N ) ) =/= (/) ) | 
						
							| 41 | 26 40 | eqnetrd |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( dom G i^i ( `' G " ( M ... N ) ) ) =/= (/) ) | 
						
							| 42 |  | imadisj |  |-  ( ( G " ( `' G " ( M ... N ) ) ) = (/) <-> ( dom G i^i ( `' G " ( M ... N ) ) ) = (/) ) | 
						
							| 43 | 42 | necon3bii |  |-  ( ( G " ( `' G " ( M ... N ) ) ) =/= (/) <-> ( dom G i^i ( `' G " ( M ... N ) ) ) =/= (/) ) | 
						
							| 44 | 41 43 | sylibr |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... N ) ) ) =/= (/) ) | 
						
							| 45 |  | ffun |  |-  ( G : NN --> Z -> Fun G ) | 
						
							| 46 |  | funimacnv |  |-  ( Fun G -> ( G " ( `' G " ( M ... N ) ) ) = ( ( M ... N ) i^i ran G ) ) | 
						
							| 47 | 16 45 46 | 3syl |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... N ) ) ) = ( ( M ... N ) i^i ran G ) ) | 
						
							| 48 |  | inss1 |  |-  ( ( M ... N ) i^i ran G ) C_ ( M ... N ) | 
						
							| 49 | 47 48 | eqsstrdi |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... N ) ) ) C_ ( M ... N ) ) | 
						
							| 50 |  | simpl |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ph ) | 
						
							| 51 |  | elfzuz |  |-  ( n e. ( M ... N ) -> n e. ( ZZ>= ` M ) ) | 
						
							| 52 | 51 1 | eleqtrrdi |  |-  ( n e. ( M ... N ) -> n e. Z ) | 
						
							| 53 | 50 52 6 | syl2an |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ n e. ( M ... N ) ) -> ( F ` n ) e. CC ) | 
						
							| 54 | 47 | difeq2d |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( ( M ... N ) \ ( G " ( `' G " ( M ... N ) ) ) ) = ( ( M ... N ) \ ( ( M ... N ) i^i ran G ) ) ) | 
						
							| 55 |  | difin |  |-  ( ( M ... N ) \ ( ( M ... N ) i^i ran G ) ) = ( ( M ... N ) \ ran G ) | 
						
							| 56 | 54 55 | eqtrdi |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( ( M ... N ) \ ( G " ( `' G " ( M ... N ) ) ) ) = ( ( M ... N ) \ ran G ) ) | 
						
							| 57 | 52 | ssriv |  |-  ( M ... N ) C_ Z | 
						
							| 58 |  | ssdif |  |-  ( ( M ... N ) C_ Z -> ( ( M ... N ) \ ran G ) C_ ( Z \ ran G ) ) | 
						
							| 59 | 57 58 | mp1i |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( ( M ... N ) \ ran G ) C_ ( Z \ ran G ) ) | 
						
							| 60 | 56 59 | eqsstrd |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( ( M ... N ) \ ( G " ( `' G " ( M ... N ) ) ) ) C_ ( Z \ ran G ) ) | 
						
							| 61 | 60 | sselda |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ n e. ( ( M ... N ) \ ( G " ( `' G " ( M ... N ) ) ) ) ) -> n e. ( Z \ ran G ) ) | 
						
							| 62 | 5 | adantlr |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ n e. ( Z \ ran G ) ) -> ( F ` n ) = 0 ) | 
						
							| 63 | 61 62 | syldan |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ n e. ( ( M ... N ) \ ( G " ( `' G " ( M ... N ) ) ) ) ) -> ( F ` n ) = 0 ) | 
						
							| 64 |  | elfznn |  |-  ( k e. ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) -> k e. NN ) | 
						
							| 65 | 50 64 7 | syl2an |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) ) -> ( H ` k ) = ( F ` ( G ` k ) ) ) | 
						
							| 66 | 20 | eleq2d |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( k e. ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) <-> k e. ( `' G " ( M ... N ) ) ) ) | 
						
							| 67 | 66 | biimpa |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) ) -> k e. ( `' G " ( M ... N ) ) ) | 
						
							| 68 | 67 | fvresd |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) ) -> ( ( G |` ( `' G " ( M ... N ) ) ) ` k ) = ( G ` k ) ) | 
						
							| 69 | 68 | fveq2d |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) ) -> ( F ` ( ( G |` ( `' G " ( M ... N ) ) ) ` k ) ) = ( F ` ( G ` k ) ) ) | 
						
							| 70 | 65 69 | eqtr4d |  |-  ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) ) -> ( H ` k ) = ( F ` ( ( G |` ( `' G " ( M ... N ) ) ) ` k ) ) ) | 
						
							| 71 | 9 11 13 14 23 44 49 53 63 70 | seqcoll2 |  |-  ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( seq M ( + , F ) ` N ) = ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) ) |