| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iserd.1 |
|- ( ph -> Rel R ) |
| 2 |
|
iserd.2 |
|- ( ( ph /\ x R y ) -> y R x ) |
| 3 |
|
iserd.3 |
|- ( ( ph /\ ( x R y /\ y R z ) ) -> x R z ) |
| 4 |
|
iserd.4 |
|- ( ph -> ( x e. A <-> x R x ) ) |
| 5 |
|
eqidd |
|- ( ph -> dom R = dom R ) |
| 6 |
2
|
ex |
|- ( ph -> ( x R y -> y R x ) ) |
| 7 |
3
|
ex |
|- ( ph -> ( ( x R y /\ y R z ) -> x R z ) ) |
| 8 |
6 7
|
jca |
|- ( ph -> ( ( x R y -> y R x ) /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |
| 9 |
8
|
alrimiv |
|- ( ph -> A. z ( ( x R y -> y R x ) /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |
| 10 |
9
|
alrimiv |
|- ( ph -> A. y A. z ( ( x R y -> y R x ) /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |
| 11 |
10
|
alrimiv |
|- ( ph -> A. x A. y A. z ( ( x R y -> y R x ) /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |
| 12 |
|
dfer2 |
|- ( R Er dom R <-> ( Rel R /\ dom R = dom R /\ A. x A. y A. z ( ( x R y -> y R x ) /\ ( ( x R y /\ y R z ) -> x R z ) ) ) ) |
| 13 |
1 5 11 12
|
syl3anbrc |
|- ( ph -> R Er dom R ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ x e. dom R ) -> R Er dom R ) |
| 15 |
|
simpr |
|- ( ( ph /\ x e. dom R ) -> x e. dom R ) |
| 16 |
14 15
|
erref |
|- ( ( ph /\ x e. dom R ) -> x R x ) |
| 17 |
16
|
ex |
|- ( ph -> ( x e. dom R -> x R x ) ) |
| 18 |
|
vex |
|- x e. _V |
| 19 |
18 18
|
breldm |
|- ( x R x -> x e. dom R ) |
| 20 |
17 19
|
impbid1 |
|- ( ph -> ( x e. dom R <-> x R x ) ) |
| 21 |
20 4
|
bitr4d |
|- ( ph -> ( x e. dom R <-> x e. A ) ) |
| 22 |
21
|
eqrdv |
|- ( ph -> dom R = A ) |
| 23 |
|
ereq2 |
|- ( dom R = A -> ( R Er dom R <-> R Er A ) ) |
| 24 |
22 23
|
syl |
|- ( ph -> ( R Er dom R <-> R Er A ) ) |
| 25 |
13 24
|
mpbid |
|- ( ph -> R Er A ) |