Metamath Proof Explorer


Theorem iserex

Description: An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 27-Apr-2014)

Ref Expression
Hypotheses clim2ser.1
|- Z = ( ZZ>= ` M )
iserex.2
|- ( ph -> N e. Z )
iserex.3
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC )
Assertion iserex
|- ( ph -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) )

Proof

Step Hyp Ref Expression
1 clim2ser.1
 |-  Z = ( ZZ>= ` M )
2 iserex.2
 |-  ( ph -> N e. Z )
3 iserex.3
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC )
4 seqeq1
 |-  ( N = M -> seq N ( + , F ) = seq M ( + , F ) )
5 4 eleq1d
 |-  ( N = M -> ( seq N ( + , F ) e. dom ~~> <-> seq M ( + , F ) e. dom ~~> ) )
6 5 bicomd
 |-  ( N = M -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) )
7 6 a1i
 |-  ( ph -> ( N = M -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) )
8 simpll
 |-  ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> ph )
9 2 1 eleqtrdi
 |-  ( ph -> N e. ( ZZ>= ` M ) )
10 eluzelz
 |-  ( N e. ( ZZ>= ` M ) -> N e. ZZ )
11 9 10 syl
 |-  ( ph -> N e. ZZ )
12 11 zcnd
 |-  ( ph -> N e. CC )
13 ax-1cn
 |-  1 e. CC
14 npcan
 |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N )
15 12 13 14 sylancl
 |-  ( ph -> ( ( N - 1 ) + 1 ) = N )
16 15 seqeq1d
 |-  ( ph -> seq ( ( N - 1 ) + 1 ) ( + , F ) = seq N ( + , F ) )
17 8 16 syl
 |-  ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> seq ( ( N - 1 ) + 1 ) ( + , F ) = seq N ( + , F ) )
18 simplr
 |-  ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> ( N - 1 ) e. ( ZZ>= ` M ) )
19 18 1 eleqtrrdi
 |-  ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> ( N - 1 ) e. Z )
20 8 3 sylan
 |-  ( ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) /\ k e. Z ) -> ( F ` k ) e. CC )
21 simpr
 |-  ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> seq M ( + , F ) e. dom ~~> )
22 climdm
 |-  ( seq M ( + , F ) e. dom ~~> <-> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) )
23 21 22 sylib
 |-  ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) )
24 1 19 20 23 clim2ser
 |-  ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> seq ( ( N - 1 ) + 1 ) ( + , F ) ~~> ( ( ~~> ` seq M ( + , F ) ) - ( seq M ( + , F ) ` ( N - 1 ) ) ) )
25 17 24 eqbrtrrd
 |-  ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> seq N ( + , F ) ~~> ( ( ~~> ` seq M ( + , F ) ) - ( seq M ( + , F ) ` ( N - 1 ) ) ) )
26 climrel
 |-  Rel ~~>
27 26 releldmi
 |-  ( seq N ( + , F ) ~~> ( ( ~~> ` seq M ( + , F ) ) - ( seq M ( + , F ) ` ( N - 1 ) ) ) -> seq N ( + , F ) e. dom ~~> )
28 25 27 syl
 |-  ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> seq N ( + , F ) e. dom ~~> )
29 simpr
 |-  ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) )
30 29 1 eleqtrrdi
 |-  ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( N - 1 ) e. Z )
31 30 adantr
 |-  ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> ( N - 1 ) e. Z )
32 simpll
 |-  ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> ph )
33 32 3 sylan
 |-  ( ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) /\ k e. Z ) -> ( F ` k ) e. CC )
34 32 16 syl
 |-  ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> seq ( ( N - 1 ) + 1 ) ( + , F ) = seq N ( + , F ) )
35 simpr
 |-  ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> seq N ( + , F ) e. dom ~~> )
36 climdm
 |-  ( seq N ( + , F ) e. dom ~~> <-> seq N ( + , F ) ~~> ( ~~> ` seq N ( + , F ) ) )
37 35 36 sylib
 |-  ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> seq N ( + , F ) ~~> ( ~~> ` seq N ( + , F ) ) )
38 34 37 eqbrtrd
 |-  ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> seq ( ( N - 1 ) + 1 ) ( + , F ) ~~> ( ~~> ` seq N ( + , F ) ) )
39 1 31 33 38 clim2ser2
 |-  ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> seq M ( + , F ) ~~> ( ( ~~> ` seq N ( + , F ) ) + ( seq M ( + , F ) ` ( N - 1 ) ) ) )
40 26 releldmi
 |-  ( seq M ( + , F ) ~~> ( ( ~~> ` seq N ( + , F ) ) + ( seq M ( + , F ) ` ( N - 1 ) ) ) -> seq M ( + , F ) e. dom ~~> )
41 39 40 syl
 |-  ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> seq M ( + , F ) e. dom ~~> )
42 28 41 impbida
 |-  ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) )
43 42 ex
 |-  ( ph -> ( ( N - 1 ) e. ( ZZ>= ` M ) -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) )
44 uzm1
 |-  ( N e. ( ZZ>= ` M ) -> ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) )
45 9 44 syl
 |-  ( ph -> ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) )
46 7 43 45 mpjaod
 |-  ( ph -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) )