Step |
Hyp |
Ref |
Expression |
1 |
|
clim2ser.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
iserex.2 |
|- ( ph -> N e. Z ) |
3 |
|
iserex.3 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
4 |
|
seqeq1 |
|- ( N = M -> seq N ( + , F ) = seq M ( + , F ) ) |
5 |
4
|
eleq1d |
|- ( N = M -> ( seq N ( + , F ) e. dom ~~> <-> seq M ( + , F ) e. dom ~~> ) ) |
6 |
5
|
bicomd |
|- ( N = M -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) |
7 |
6
|
a1i |
|- ( ph -> ( N = M -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) ) |
8 |
|
simpll |
|- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> ph ) |
9 |
2 1
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
10 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
11 |
9 10
|
syl |
|- ( ph -> N e. ZZ ) |
12 |
11
|
zcnd |
|- ( ph -> N e. CC ) |
13 |
|
ax-1cn |
|- 1 e. CC |
14 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
15 |
12 13 14
|
sylancl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
16 |
15
|
seqeq1d |
|- ( ph -> seq ( ( N - 1 ) + 1 ) ( + , F ) = seq N ( + , F ) ) |
17 |
8 16
|
syl |
|- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> seq ( ( N - 1 ) + 1 ) ( + , F ) = seq N ( + , F ) ) |
18 |
|
simplr |
|- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
19 |
18 1
|
eleqtrrdi |
|- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> ( N - 1 ) e. Z ) |
20 |
8 3
|
sylan |
|- ( ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) /\ k e. Z ) -> ( F ` k ) e. CC ) |
21 |
|
simpr |
|- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> seq M ( + , F ) e. dom ~~> ) |
22 |
|
climdm |
|- ( seq M ( + , F ) e. dom ~~> <-> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) ) |
23 |
21 22
|
sylib |
|- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) ) |
24 |
1 19 20 23
|
clim2ser |
|- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> seq ( ( N - 1 ) + 1 ) ( + , F ) ~~> ( ( ~~> ` seq M ( + , F ) ) - ( seq M ( + , F ) ` ( N - 1 ) ) ) ) |
25 |
17 24
|
eqbrtrrd |
|- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> seq N ( + , F ) ~~> ( ( ~~> ` seq M ( + , F ) ) - ( seq M ( + , F ) ` ( N - 1 ) ) ) ) |
26 |
|
climrel |
|- Rel ~~> |
27 |
26
|
releldmi |
|- ( seq N ( + , F ) ~~> ( ( ~~> ` seq M ( + , F ) ) - ( seq M ( + , F ) ` ( N - 1 ) ) ) -> seq N ( + , F ) e. dom ~~> ) |
28 |
25 27
|
syl |
|- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> seq N ( + , F ) e. dom ~~> ) |
29 |
|
simpr |
|- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
30 |
29 1
|
eleqtrrdi |
|- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( N - 1 ) e. Z ) |
31 |
30
|
adantr |
|- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> ( N - 1 ) e. Z ) |
32 |
|
simpll |
|- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> ph ) |
33 |
32 3
|
sylan |
|- ( ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) /\ k e. Z ) -> ( F ` k ) e. CC ) |
34 |
32 16
|
syl |
|- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> seq ( ( N - 1 ) + 1 ) ( + , F ) = seq N ( + , F ) ) |
35 |
|
simpr |
|- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> seq N ( + , F ) e. dom ~~> ) |
36 |
|
climdm |
|- ( seq N ( + , F ) e. dom ~~> <-> seq N ( + , F ) ~~> ( ~~> ` seq N ( + , F ) ) ) |
37 |
35 36
|
sylib |
|- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> seq N ( + , F ) ~~> ( ~~> ` seq N ( + , F ) ) ) |
38 |
34 37
|
eqbrtrd |
|- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> seq ( ( N - 1 ) + 1 ) ( + , F ) ~~> ( ~~> ` seq N ( + , F ) ) ) |
39 |
1 31 33 38
|
clim2ser2 |
|- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> seq M ( + , F ) ~~> ( ( ~~> ` seq N ( + , F ) ) + ( seq M ( + , F ) ` ( N - 1 ) ) ) ) |
40 |
26
|
releldmi |
|- ( seq M ( + , F ) ~~> ( ( ~~> ` seq N ( + , F ) ) + ( seq M ( + , F ) ` ( N - 1 ) ) ) -> seq M ( + , F ) e. dom ~~> ) |
41 |
39 40
|
syl |
|- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> seq M ( + , F ) e. dom ~~> ) |
42 |
28 41
|
impbida |
|- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) |
43 |
42
|
ex |
|- ( ph -> ( ( N - 1 ) e. ( ZZ>= ` M ) -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) ) |
44 |
|
uzm1 |
|- ( N e. ( ZZ>= ` M ) -> ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) ) |
45 |
9 44
|
syl |
|- ( ph -> ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) ) |
46 |
7 43 45
|
mpjaod |
|- ( ph -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) |