Step |
Hyp |
Ref |
Expression |
1 |
|
clim2ser.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
iserge0.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
iserge0.3 |
|- ( ph -> seq M ( + , F ) ~~> A ) |
4 |
|
iserge0.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
5 |
|
iserge0.5 |
|- ( ( ph /\ k e. Z ) -> 0 <_ ( F ` k ) ) |
6 |
|
serclim0 |
|- ( M e. ZZ -> seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ~~> 0 ) |
7 |
2 6
|
syl |
|- ( ph -> seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ~~> 0 ) |
8 |
|
simpr |
|- ( ( ph /\ k e. Z ) -> k e. Z ) |
9 |
8 1
|
eleqtrdi |
|- ( ( ph /\ k e. Z ) -> k e. ( ZZ>= ` M ) ) |
10 |
|
c0ex |
|- 0 e. _V |
11 |
10
|
fvconst2 |
|- ( k e. ( ZZ>= ` M ) -> ( ( ( ZZ>= ` M ) X. { 0 } ) ` k ) = 0 ) |
12 |
9 11
|
syl |
|- ( ( ph /\ k e. Z ) -> ( ( ( ZZ>= ` M ) X. { 0 } ) ` k ) = 0 ) |
13 |
|
0re |
|- 0 e. RR |
14 |
12 13
|
eqeltrdi |
|- ( ( ph /\ k e. Z ) -> ( ( ( ZZ>= ` M ) X. { 0 } ) ` k ) e. RR ) |
15 |
12 5
|
eqbrtrd |
|- ( ( ph /\ k e. Z ) -> ( ( ( ZZ>= ` M ) X. { 0 } ) ` k ) <_ ( F ` k ) ) |
16 |
1 2 7 3 14 4 15
|
iserle |
|- ( ph -> 0 <_ A ) |