Metamath Proof Explorer


Theorem iseri

Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. Inference version of iserd , which avoids the need to provide a "dummy antecedent" ph if there is no natural one to choose. (Contributed by AV, 30-Apr-2021)

Ref Expression
Hypotheses iseri.1
|- Rel R
iseri.2
|- ( x R y -> y R x )
iseri.3
|- ( ( x R y /\ y R z ) -> x R z )
iseri.4
|- ( x e. A <-> x R x )
Assertion iseri
|- R Er A

Proof

Step Hyp Ref Expression
1 iseri.1
 |-  Rel R
2 iseri.2
 |-  ( x R y -> y R x )
3 iseri.3
 |-  ( ( x R y /\ y R z ) -> x R z )
4 iseri.4
 |-  ( x e. A <-> x R x )
5 1 a1i
 |-  ( T. -> Rel R )
6 2 adantl
 |-  ( ( T. /\ x R y ) -> y R x )
7 3 adantl
 |-  ( ( T. /\ ( x R y /\ y R z ) ) -> x R z )
8 4 a1i
 |-  ( T. -> ( x e. A <-> x R x ) )
9 5 6 7 8 iserd
 |-  ( T. -> R Er A )
10 9 mptru
 |-  R Er A