Step |
Hyp |
Ref |
Expression |
1 |
|
clim2ser.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
iserle.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
iserle.4 |
|- ( ph -> seq M ( + , F ) ~~> A ) |
4 |
|
iserle.5 |
|- ( ph -> seq M ( + , G ) ~~> B ) |
5 |
|
iserle.6 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
6 |
|
iserle.7 |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
7 |
|
iserle.8 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) <_ ( G ` k ) ) |
8 |
1 2 5
|
serfre |
|- ( ph -> seq M ( + , F ) : Z --> RR ) |
9 |
8
|
ffvelrnda |
|- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. RR ) |
10 |
1 2 6
|
serfre |
|- ( ph -> seq M ( + , G ) : Z --> RR ) |
11 |
10
|
ffvelrnda |
|- ( ( ph /\ j e. Z ) -> ( seq M ( + , G ) ` j ) e. RR ) |
12 |
|
simpr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
13 |
12 1
|
eleqtrdi |
|- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
14 |
|
simpll |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ph ) |
15 |
|
elfzuz |
|- ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) |
16 |
15 1
|
eleqtrrdi |
|- ( k e. ( M ... j ) -> k e. Z ) |
17 |
16
|
adantl |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> k e. Z ) |
18 |
14 17 5
|
syl2anc |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. RR ) |
19 |
14 17 6
|
syl2anc |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( G ` k ) e. RR ) |
20 |
14 17 7
|
syl2anc |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( F ` k ) <_ ( G ` k ) ) |
21 |
13 18 19 20
|
serle |
|- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) <_ ( seq M ( + , G ) ` j ) ) |
22 |
1 2 3 4 9 11 21
|
climle |
|- ( ph -> A <_ B ) |