Metamath Proof Explorer


Theorem isermulc2

Description: Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007) (Revised by Mario Carneiro, 1-Feb-2014)

Ref Expression
Hypotheses clim2ser.1
|- Z = ( ZZ>= ` M )
isermulc2.2
|- ( ph -> M e. ZZ )
isermulc2.4
|- ( ph -> C e. CC )
isermulc2.5
|- ( ph -> seq M ( + , F ) ~~> A )
isermulc2.6
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC )
isermulc2.7
|- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( C x. ( F ` k ) ) )
Assertion isermulc2
|- ( ph -> seq M ( + , G ) ~~> ( C x. A ) )

Proof

Step Hyp Ref Expression
1 clim2ser.1
 |-  Z = ( ZZ>= ` M )
2 isermulc2.2
 |-  ( ph -> M e. ZZ )
3 isermulc2.4
 |-  ( ph -> C e. CC )
4 isermulc2.5
 |-  ( ph -> seq M ( + , F ) ~~> A )
5 isermulc2.6
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC )
6 isermulc2.7
 |-  ( ( ph /\ k e. Z ) -> ( G ` k ) = ( C x. ( F ` k ) ) )
7 seqex
 |-  seq M ( + , G ) e. _V
8 7 a1i
 |-  ( ph -> seq M ( + , G ) e. _V )
9 1 2 5 serf
 |-  ( ph -> seq M ( + , F ) : Z --> CC )
10 9 ffvelrnda
 |-  ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. CC )
11 addcl
 |-  ( ( k e. CC /\ x e. CC ) -> ( k + x ) e. CC )
12 11 adantl
 |-  ( ( ( ph /\ j e. Z ) /\ ( k e. CC /\ x e. CC ) ) -> ( k + x ) e. CC )
13 3 adantr
 |-  ( ( ph /\ j e. Z ) -> C e. CC )
14 adddi
 |-  ( ( C e. CC /\ k e. CC /\ x e. CC ) -> ( C x. ( k + x ) ) = ( ( C x. k ) + ( C x. x ) ) )
15 14 3expb
 |-  ( ( C e. CC /\ ( k e. CC /\ x e. CC ) ) -> ( C x. ( k + x ) ) = ( ( C x. k ) + ( C x. x ) ) )
16 13 15 sylan
 |-  ( ( ( ph /\ j e. Z ) /\ ( k e. CC /\ x e. CC ) ) -> ( C x. ( k + x ) ) = ( ( C x. k ) + ( C x. x ) ) )
17 simpr
 |-  ( ( ph /\ j e. Z ) -> j e. Z )
18 17 1 eleqtrdi
 |-  ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) )
19 elfzuz
 |-  ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) )
20 19 1 eleqtrrdi
 |-  ( k e. ( M ... j ) -> k e. Z )
21 20 5 sylan2
 |-  ( ( ph /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC )
22 21 adantlr
 |-  ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC )
23 20 6 sylan2
 |-  ( ( ph /\ k e. ( M ... j ) ) -> ( G ` k ) = ( C x. ( F ` k ) ) )
24 23 adantlr
 |-  ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( G ` k ) = ( C x. ( F ` k ) ) )
25 12 16 18 22 24 seqdistr
 |-  ( ( ph /\ j e. Z ) -> ( seq M ( + , G ) ` j ) = ( C x. ( seq M ( + , F ) ` j ) ) )
26 1 2 4 3 8 10 25 climmulc2
 |-  ( ph -> seq M ( + , G ) ~~> ( C x. A ) )