Step |
Hyp |
Ref |
Expression |
1 |
|
clim2ser.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
isermulc2.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
isermulc2.4 |
|- ( ph -> C e. CC ) |
4 |
|
isermulc2.5 |
|- ( ph -> seq M ( + , F ) ~~> A ) |
5 |
|
isermulc2.6 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
6 |
|
isermulc2.7 |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( C x. ( F ` k ) ) ) |
7 |
|
seqex |
|- seq M ( + , G ) e. _V |
8 |
7
|
a1i |
|- ( ph -> seq M ( + , G ) e. _V ) |
9 |
1 2 5
|
serf |
|- ( ph -> seq M ( + , F ) : Z --> CC ) |
10 |
9
|
ffvelrnda |
|- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. CC ) |
11 |
|
addcl |
|- ( ( k e. CC /\ x e. CC ) -> ( k + x ) e. CC ) |
12 |
11
|
adantl |
|- ( ( ( ph /\ j e. Z ) /\ ( k e. CC /\ x e. CC ) ) -> ( k + x ) e. CC ) |
13 |
3
|
adantr |
|- ( ( ph /\ j e. Z ) -> C e. CC ) |
14 |
|
adddi |
|- ( ( C e. CC /\ k e. CC /\ x e. CC ) -> ( C x. ( k + x ) ) = ( ( C x. k ) + ( C x. x ) ) ) |
15 |
14
|
3expb |
|- ( ( C e. CC /\ ( k e. CC /\ x e. CC ) ) -> ( C x. ( k + x ) ) = ( ( C x. k ) + ( C x. x ) ) ) |
16 |
13 15
|
sylan |
|- ( ( ( ph /\ j e. Z ) /\ ( k e. CC /\ x e. CC ) ) -> ( C x. ( k + x ) ) = ( ( C x. k ) + ( C x. x ) ) ) |
17 |
|
simpr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
18 |
17 1
|
eleqtrdi |
|- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
19 |
|
elfzuz |
|- ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) |
20 |
19 1
|
eleqtrrdi |
|- ( k e. ( M ... j ) -> k e. Z ) |
21 |
20 5
|
sylan2 |
|- ( ( ph /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
22 |
21
|
adantlr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
23 |
20 6
|
sylan2 |
|- ( ( ph /\ k e. ( M ... j ) ) -> ( G ` k ) = ( C x. ( F ` k ) ) ) |
24 |
23
|
adantlr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( G ` k ) = ( C x. ( F ` k ) ) ) |
25 |
12 16 18 22 24
|
seqdistr |
|- ( ( ph /\ j e. Z ) -> ( seq M ( + , G ) ` j ) = ( C x. ( seq M ( + , F ) ` j ) ) ) |
26 |
1 2 4 3 8 10 25
|
climmulc2 |
|- ( ph -> seq M ( + , G ) ~~> ( C x. A ) ) |