Step |
Hyp |
Ref |
Expression |
1 |
|
iserodd.f |
|- ( ( ph /\ k e. NN0 ) -> C e. CC ) |
2 |
|
iserodd.h |
|- ( n = ( ( 2 x. k ) + 1 ) -> B = C ) |
3 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
4 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
5 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
6 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
7 |
|
2nn0 |
|- 2 e. NN0 |
8 |
7
|
a1i |
|- ( ph -> 2 e. NN0 ) |
9 |
|
nn0mulcl |
|- ( ( 2 e. NN0 /\ m e. NN0 ) -> ( 2 x. m ) e. NN0 ) |
10 |
8 9
|
sylan |
|- ( ( ph /\ m e. NN0 ) -> ( 2 x. m ) e. NN0 ) |
11 |
|
nn0p1nn |
|- ( ( 2 x. m ) e. NN0 -> ( ( 2 x. m ) + 1 ) e. NN ) |
12 |
10 11
|
syl |
|- ( ( ph /\ m e. NN0 ) -> ( ( 2 x. m ) + 1 ) e. NN ) |
13 |
12
|
fmpttd |
|- ( ph -> ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) : NN0 --> NN ) |
14 |
|
nn0mulcl |
|- ( ( 2 e. NN0 /\ i e. NN0 ) -> ( 2 x. i ) e. NN0 ) |
15 |
8 14
|
sylan |
|- ( ( ph /\ i e. NN0 ) -> ( 2 x. i ) e. NN0 ) |
16 |
15
|
nn0red |
|- ( ( ph /\ i e. NN0 ) -> ( 2 x. i ) e. RR ) |
17 |
|
peano2nn0 |
|- ( i e. NN0 -> ( i + 1 ) e. NN0 ) |
18 |
|
nn0mulcl |
|- ( ( 2 e. NN0 /\ ( i + 1 ) e. NN0 ) -> ( 2 x. ( i + 1 ) ) e. NN0 ) |
19 |
8 17 18
|
syl2an |
|- ( ( ph /\ i e. NN0 ) -> ( 2 x. ( i + 1 ) ) e. NN0 ) |
20 |
19
|
nn0red |
|- ( ( ph /\ i e. NN0 ) -> ( 2 x. ( i + 1 ) ) e. RR ) |
21 |
|
1red |
|- ( ( ph /\ i e. NN0 ) -> 1 e. RR ) |
22 |
|
nn0re |
|- ( i e. NN0 -> i e. RR ) |
23 |
22
|
adantl |
|- ( ( ph /\ i e. NN0 ) -> i e. RR ) |
24 |
23
|
ltp1d |
|- ( ( ph /\ i e. NN0 ) -> i < ( i + 1 ) ) |
25 |
|
1red |
|- ( i e. NN0 -> 1 e. RR ) |
26 |
22 25
|
readdcld |
|- ( i e. NN0 -> ( i + 1 ) e. RR ) |
27 |
|
2rp |
|- 2 e. RR+ |
28 |
27
|
a1i |
|- ( i e. NN0 -> 2 e. RR+ ) |
29 |
22 26 28
|
ltmul2d |
|- ( i e. NN0 -> ( i < ( i + 1 ) <-> ( 2 x. i ) < ( 2 x. ( i + 1 ) ) ) ) |
30 |
29
|
adantl |
|- ( ( ph /\ i e. NN0 ) -> ( i < ( i + 1 ) <-> ( 2 x. i ) < ( 2 x. ( i + 1 ) ) ) ) |
31 |
24 30
|
mpbid |
|- ( ( ph /\ i e. NN0 ) -> ( 2 x. i ) < ( 2 x. ( i + 1 ) ) ) |
32 |
16 20 21 31
|
ltadd1dd |
|- ( ( ph /\ i e. NN0 ) -> ( ( 2 x. i ) + 1 ) < ( ( 2 x. ( i + 1 ) ) + 1 ) ) |
33 |
|
oveq2 |
|- ( m = i -> ( 2 x. m ) = ( 2 x. i ) ) |
34 |
33
|
oveq1d |
|- ( m = i -> ( ( 2 x. m ) + 1 ) = ( ( 2 x. i ) + 1 ) ) |
35 |
|
eqid |
|- ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) = ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) |
36 |
|
ovex |
|- ( ( 2 x. i ) + 1 ) e. _V |
37 |
34 35 36
|
fvmpt |
|- ( i e. NN0 -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) = ( ( 2 x. i ) + 1 ) ) |
38 |
37
|
adantl |
|- ( ( ph /\ i e. NN0 ) -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) = ( ( 2 x. i ) + 1 ) ) |
39 |
17
|
adantl |
|- ( ( ph /\ i e. NN0 ) -> ( i + 1 ) e. NN0 ) |
40 |
|
oveq2 |
|- ( m = ( i + 1 ) -> ( 2 x. m ) = ( 2 x. ( i + 1 ) ) ) |
41 |
40
|
oveq1d |
|- ( m = ( i + 1 ) -> ( ( 2 x. m ) + 1 ) = ( ( 2 x. ( i + 1 ) ) + 1 ) ) |
42 |
|
ovex |
|- ( ( 2 x. ( i + 1 ) ) + 1 ) e. _V |
43 |
41 35 42
|
fvmpt |
|- ( ( i + 1 ) e. NN0 -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` ( i + 1 ) ) = ( ( 2 x. ( i + 1 ) ) + 1 ) ) |
44 |
39 43
|
syl |
|- ( ( ph /\ i e. NN0 ) -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` ( i + 1 ) ) = ( ( 2 x. ( i + 1 ) ) + 1 ) ) |
45 |
32 38 44
|
3brtr4d |
|- ( ( ph /\ i e. NN0 ) -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) < ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` ( i + 1 ) ) ) |
46 |
|
eldifi |
|- ( n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) -> n e. NN ) |
47 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
48 |
|
0cnd |
|- ( ( ( ph /\ n e. NN ) /\ 2 || n ) -> 0 e. CC ) |
49 |
|
nnz |
|- ( n e. NN -> n e. ZZ ) |
50 |
49
|
adantl |
|- ( ( ph /\ n e. NN ) -> n e. ZZ ) |
51 |
|
odd2np1 |
|- ( n e. ZZ -> ( -. 2 || n <-> E. k e. ZZ ( ( 2 x. k ) + 1 ) = n ) ) |
52 |
50 51
|
syl |
|- ( ( ph /\ n e. NN ) -> ( -. 2 || n <-> E. k e. ZZ ( ( 2 x. k ) + 1 ) = n ) ) |
53 |
|
simprl |
|- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> k e. ZZ ) |
54 |
|
nnm1nn0 |
|- ( n e. NN -> ( n - 1 ) e. NN0 ) |
55 |
54
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( n - 1 ) e. NN0 ) |
56 |
55
|
nn0red |
|- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( n - 1 ) e. RR ) |
57 |
27
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> 2 e. RR+ ) |
58 |
55
|
nn0ge0d |
|- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> 0 <_ ( n - 1 ) ) |
59 |
56 57 58
|
divge0d |
|- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> 0 <_ ( ( n - 1 ) / 2 ) ) |
60 |
|
simprr |
|- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( ( 2 x. k ) + 1 ) = n ) |
61 |
60
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( ( ( 2 x. k ) + 1 ) - 1 ) = ( n - 1 ) ) |
62 |
|
2cn |
|- 2 e. CC |
63 |
|
zcn |
|- ( k e. ZZ -> k e. CC ) |
64 |
63
|
ad2antrl |
|- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> k e. CC ) |
65 |
|
mulcl |
|- ( ( 2 e. CC /\ k e. CC ) -> ( 2 x. k ) e. CC ) |
66 |
62 64 65
|
sylancr |
|- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( 2 x. k ) e. CC ) |
67 |
|
ax-1cn |
|- 1 e. CC |
68 |
|
pncan |
|- ( ( ( 2 x. k ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. k ) + 1 ) - 1 ) = ( 2 x. k ) ) |
69 |
66 67 68
|
sylancl |
|- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( ( ( 2 x. k ) + 1 ) - 1 ) = ( 2 x. k ) ) |
70 |
61 69
|
eqtr3d |
|- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( n - 1 ) = ( 2 x. k ) ) |
71 |
70
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( ( n - 1 ) / 2 ) = ( ( 2 x. k ) / 2 ) ) |
72 |
|
2cnd |
|- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> 2 e. CC ) |
73 |
|
2ne0 |
|- 2 =/= 0 |
74 |
73
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> 2 =/= 0 ) |
75 |
64 72 74
|
divcan3d |
|- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( ( 2 x. k ) / 2 ) = k ) |
76 |
71 75
|
eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( ( n - 1 ) / 2 ) = k ) |
77 |
59 76
|
breqtrd |
|- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> 0 <_ k ) |
78 |
|
elnn0z |
|- ( k e. NN0 <-> ( k e. ZZ /\ 0 <_ k ) ) |
79 |
53 77 78
|
sylanbrc |
|- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> k e. NN0 ) |
80 |
79
|
ex |
|- ( ( ph /\ n e. NN ) -> ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) -> k e. NN0 ) ) |
81 |
|
simpr |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) -> ( ( 2 x. k ) + 1 ) = n ) |
82 |
81
|
eqcomd |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) -> n = ( ( 2 x. k ) + 1 ) ) |
83 |
80 82
|
jca2 |
|- ( ( ph /\ n e. NN ) -> ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) -> ( k e. NN0 /\ n = ( ( 2 x. k ) + 1 ) ) ) ) |
84 |
83
|
reximdv2 |
|- ( ( ph /\ n e. NN ) -> ( E. k e. ZZ ( ( 2 x. k ) + 1 ) = n -> E. k e. NN0 n = ( ( 2 x. k ) + 1 ) ) ) |
85 |
52 84
|
sylbid |
|- ( ( ph /\ n e. NN ) -> ( -. 2 || n -> E. k e. NN0 n = ( ( 2 x. k ) + 1 ) ) ) |
86 |
2
|
eleq1d |
|- ( n = ( ( 2 x. k ) + 1 ) -> ( B e. CC <-> C e. CC ) ) |
87 |
1 86
|
syl5ibrcom |
|- ( ( ph /\ k e. NN0 ) -> ( n = ( ( 2 x. k ) + 1 ) -> B e. CC ) ) |
88 |
87
|
rexlimdva |
|- ( ph -> ( E. k e. NN0 n = ( ( 2 x. k ) + 1 ) -> B e. CC ) ) |
89 |
88
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( E. k e. NN0 n = ( ( 2 x. k ) + 1 ) -> B e. CC ) ) |
90 |
85 89
|
syld |
|- ( ( ph /\ n e. NN ) -> ( -. 2 || n -> B e. CC ) ) |
91 |
90
|
imp |
|- ( ( ( ph /\ n e. NN ) /\ -. 2 || n ) -> B e. CC ) |
92 |
48 91
|
ifclda |
|- ( ( ph /\ n e. NN ) -> if ( 2 || n , 0 , B ) e. CC ) |
93 |
|
eqid |
|- ( n e. NN |-> if ( 2 || n , 0 , B ) ) = ( n e. NN |-> if ( 2 || n , 0 , B ) ) |
94 |
93
|
fvmpt2 |
|- ( ( n e. NN /\ if ( 2 || n , 0 , B ) e. CC ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = if ( 2 || n , 0 , B ) ) |
95 |
47 92 94
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = if ( 2 || n , 0 , B ) ) |
96 |
46 95
|
sylan2 |
|- ( ( ph /\ n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = if ( 2 || n , 0 , B ) ) |
97 |
|
eldif |
|- ( n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) <-> ( n e. NN /\ -. n e. ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) |
98 |
|
oveq2 |
|- ( m = k -> ( 2 x. m ) = ( 2 x. k ) ) |
99 |
98
|
oveq1d |
|- ( m = k -> ( ( 2 x. m ) + 1 ) = ( ( 2 x. k ) + 1 ) ) |
100 |
99
|
cbvmptv |
|- ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) = ( k e. NN0 |-> ( ( 2 x. k ) + 1 ) ) |
101 |
100
|
elrnmpt |
|- ( n e. _V -> ( n e. ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) <-> E. k e. NN0 n = ( ( 2 x. k ) + 1 ) ) ) |
102 |
101
|
elv |
|- ( n e. ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) <-> E. k e. NN0 n = ( ( 2 x. k ) + 1 ) ) |
103 |
85 102
|
syl6ibr |
|- ( ( ph /\ n e. NN ) -> ( -. 2 || n -> n e. ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) |
104 |
103
|
con1d |
|- ( ( ph /\ n e. NN ) -> ( -. n e. ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) -> 2 || n ) ) |
105 |
104
|
impr |
|- ( ( ph /\ ( n e. NN /\ -. n e. ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) -> 2 || n ) |
106 |
97 105
|
sylan2b |
|- ( ( ph /\ n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) -> 2 || n ) |
107 |
106
|
iftrued |
|- ( ( ph /\ n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) -> if ( 2 || n , 0 , B ) = 0 ) |
108 |
96 107
|
eqtrd |
|- ( ( ph /\ n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = 0 ) |
109 |
108
|
ralrimiva |
|- ( ph -> A. n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = 0 ) |
110 |
|
nfv |
|- F/ j ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = 0 |
111 |
|
nffvmpt1 |
|- F/_ n ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) |
112 |
111
|
nfeq1 |
|- F/ n ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) = 0 |
113 |
|
fveqeq2 |
|- ( n = j -> ( ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = 0 <-> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) = 0 ) ) |
114 |
110 112 113
|
cbvralw |
|- ( A. n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = 0 <-> A. j e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) = 0 ) |
115 |
109 114
|
sylib |
|- ( ph -> A. j e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) = 0 ) |
116 |
115
|
r19.21bi |
|- ( ( ph /\ j e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) = 0 ) |
117 |
92
|
fmpttd |
|- ( ph -> ( n e. NN |-> if ( 2 || n , 0 , B ) ) : NN --> CC ) |
118 |
117
|
ffvelrnda |
|- ( ( ph /\ j e. NN ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) e. CC ) |
119 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
120 |
|
eqid |
|- ( k e. NN0 |-> C ) = ( k e. NN0 |-> C ) |
121 |
120
|
fvmpt2 |
|- ( ( k e. NN0 /\ C e. CC ) -> ( ( k e. NN0 |-> C ) ` k ) = C ) |
122 |
119 1 121
|
syl2anc |
|- ( ( ph /\ k e. NN0 ) -> ( ( k e. NN0 |-> C ) ` k ) = C ) |
123 |
|
ovex |
|- ( ( 2 x. k ) + 1 ) e. _V |
124 |
99 35 123
|
fvmpt |
|- ( k e. NN0 -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) = ( ( 2 x. k ) + 1 ) ) |
125 |
124
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) = ( ( 2 x. k ) + 1 ) ) |
126 |
125
|
fveq2d |
|- ( ( ph /\ k e. NN0 ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( 2 x. k ) + 1 ) ) ) |
127 |
|
breq2 |
|- ( n = ( ( 2 x. k ) + 1 ) -> ( 2 || n <-> 2 || ( ( 2 x. k ) + 1 ) ) ) |
128 |
127 2
|
ifbieq2d |
|- ( n = ( ( 2 x. k ) + 1 ) -> if ( 2 || n , 0 , B ) = if ( 2 || ( ( 2 x. k ) + 1 ) , 0 , C ) ) |
129 |
|
nn0mulcl |
|- ( ( 2 e. NN0 /\ k e. NN0 ) -> ( 2 x. k ) e. NN0 ) |
130 |
8 129
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( 2 x. k ) e. NN0 ) |
131 |
|
nn0p1nn |
|- ( ( 2 x. k ) e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN ) |
132 |
130 131
|
syl |
|- ( ( ph /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) e. NN ) |
133 |
|
2z |
|- 2 e. ZZ |
134 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
135 |
134
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> k e. ZZ ) |
136 |
|
dvdsmul1 |
|- ( ( 2 e. ZZ /\ k e. ZZ ) -> 2 || ( 2 x. k ) ) |
137 |
133 135 136
|
sylancr |
|- ( ( ph /\ k e. NN0 ) -> 2 || ( 2 x. k ) ) |
138 |
130
|
nn0zd |
|- ( ( ph /\ k e. NN0 ) -> ( 2 x. k ) e. ZZ ) |
139 |
|
2nn |
|- 2 e. NN |
140 |
139
|
a1i |
|- ( ( ph /\ k e. NN0 ) -> 2 e. NN ) |
141 |
|
1lt2 |
|- 1 < 2 |
142 |
141
|
a1i |
|- ( ( ph /\ k e. NN0 ) -> 1 < 2 ) |
143 |
|
ndvdsp1 |
|- ( ( ( 2 x. k ) e. ZZ /\ 2 e. NN /\ 1 < 2 ) -> ( 2 || ( 2 x. k ) -> -. 2 || ( ( 2 x. k ) + 1 ) ) ) |
144 |
138 140 142 143
|
syl3anc |
|- ( ( ph /\ k e. NN0 ) -> ( 2 || ( 2 x. k ) -> -. 2 || ( ( 2 x. k ) + 1 ) ) ) |
145 |
137 144
|
mpd |
|- ( ( ph /\ k e. NN0 ) -> -. 2 || ( ( 2 x. k ) + 1 ) ) |
146 |
145
|
iffalsed |
|- ( ( ph /\ k e. NN0 ) -> if ( 2 || ( ( 2 x. k ) + 1 ) , 0 , C ) = C ) |
147 |
146 1
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> if ( 2 || ( ( 2 x. k ) + 1 ) , 0 , C ) e. CC ) |
148 |
93 128 132 147
|
fvmptd3 |
|- ( ( ph /\ k e. NN0 ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( 2 x. k ) + 1 ) ) = if ( 2 || ( ( 2 x. k ) + 1 ) , 0 , C ) ) |
149 |
126 148 146
|
3eqtrd |
|- ( ( ph /\ k e. NN0 ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) = C ) |
150 |
122 149
|
eqtr4d |
|- ( ( ph /\ k e. NN0 ) -> ( ( k e. NN0 |-> C ) ` k ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) ) |
151 |
150
|
ralrimiva |
|- ( ph -> A. k e. NN0 ( ( k e. NN0 |-> C ) ` k ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) ) |
152 |
|
nfv |
|- F/ i ( ( k e. NN0 |-> C ) ` k ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) |
153 |
|
nffvmpt1 |
|- F/_ k ( ( k e. NN0 |-> C ) ` i ) |
154 |
153
|
nfeq1 |
|- F/ k ( ( k e. NN0 |-> C ) ` i ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) ) |
155 |
|
fveq2 |
|- ( k = i -> ( ( k e. NN0 |-> C ) ` k ) = ( ( k e. NN0 |-> C ) ` i ) ) |
156 |
|
2fveq3 |
|- ( k = i -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) ) ) |
157 |
155 156
|
eqeq12d |
|- ( k = i -> ( ( ( k e. NN0 |-> C ) ` k ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) <-> ( ( k e. NN0 |-> C ) ` i ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) ) ) ) |
158 |
152 154 157
|
cbvralw |
|- ( A. k e. NN0 ( ( k e. NN0 |-> C ) ` k ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) <-> A. i e. NN0 ( ( k e. NN0 |-> C ) ` i ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) ) ) |
159 |
151 158
|
sylib |
|- ( ph -> A. i e. NN0 ( ( k e. NN0 |-> C ) ` i ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) ) ) |
160 |
159
|
r19.21bi |
|- ( ( ph /\ i e. NN0 ) -> ( ( k e. NN0 |-> C ) ` i ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) ) ) |
161 |
3 4 5 6 13 45 116 118 160
|
isercoll2 |
|- ( ph -> ( seq 0 ( + , ( k e. NN0 |-> C ) ) ~~> A <-> seq 1 ( + , ( n e. NN |-> if ( 2 || n , 0 , B ) ) ) ~~> A ) ) |