| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isershft.1 |  |-  F e. _V | 
						
							| 2 |  | zaddcl |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M + N ) e. ZZ ) | 
						
							| 3 | 1 | seqshft |  |-  ( ( ( M + N ) e. ZZ /\ N e. ZZ ) -> seq ( M + N ) ( .+ , ( F shift N ) ) = ( seq ( ( M + N ) - N ) ( .+ , F ) shift N ) ) | 
						
							| 4 | 2 3 | sylancom |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> seq ( M + N ) ( .+ , ( F shift N ) ) = ( seq ( ( M + N ) - N ) ( .+ , F ) shift N ) ) | 
						
							| 5 |  | zcn |  |-  ( M e. ZZ -> M e. CC ) | 
						
							| 6 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 7 |  | pncan |  |-  ( ( M e. CC /\ N e. CC ) -> ( ( M + N ) - N ) = M ) | 
						
							| 8 | 5 6 7 | syl2an |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M + N ) - N ) = M ) | 
						
							| 9 | 8 | seqeq1d |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> seq ( ( M + N ) - N ) ( .+ , F ) = seq M ( .+ , F ) ) | 
						
							| 10 | 9 | oveq1d |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( seq ( ( M + N ) - N ) ( .+ , F ) shift N ) = ( seq M ( .+ , F ) shift N ) ) | 
						
							| 11 | 4 10 | eqtrd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> seq ( M + N ) ( .+ , ( F shift N ) ) = ( seq M ( .+ , F ) shift N ) ) | 
						
							| 12 | 11 | breq1d |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( seq ( M + N ) ( .+ , ( F shift N ) ) ~~> A <-> ( seq M ( .+ , F ) shift N ) ~~> A ) ) | 
						
							| 13 |  | seqex |  |-  seq M ( .+ , F ) e. _V | 
						
							| 14 |  | climshft |  |-  ( ( N e. ZZ /\ seq M ( .+ , F ) e. _V ) -> ( ( seq M ( .+ , F ) shift N ) ~~> A <-> seq M ( .+ , F ) ~~> A ) ) | 
						
							| 15 | 13 14 | mpan2 |  |-  ( N e. ZZ -> ( ( seq M ( .+ , F ) shift N ) ~~> A <-> seq M ( .+ , F ) ~~> A ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( seq M ( .+ , F ) shift N ) ~~> A <-> seq M ( .+ , F ) ~~> A ) ) | 
						
							| 17 | 12 16 | bitr2d |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( seq M ( .+ , F ) ~~> A <-> seq ( M + N ) ( .+ , ( F shift N ) ) ~~> A ) ) |