| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isexid2.1 |  |-  X = ran G | 
						
							| 2 |  | rngopidOLD |  |-  ( G e. ( Magma i^i ExId ) -> ran G = dom dom G ) | 
						
							| 3 |  | elin |  |-  ( G e. ( Magma i^i ExId ) <-> ( G e. Magma /\ G e. ExId ) ) | 
						
							| 4 |  | eqid |  |-  dom dom G = dom dom G | 
						
							| 5 | 4 | isexid |  |-  ( G e. ExId -> ( G e. ExId <-> E. u e. dom dom G A. x e. dom dom G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) | 
						
							| 6 | 5 | ibi |  |-  ( G e. ExId -> E. u e. dom dom G A. x e. dom dom G ( ( u G x ) = x /\ ( x G u ) = x ) ) | 
						
							| 7 | 6 | a1d |  |-  ( G e. ExId -> ( X = dom dom G -> E. u e. dom dom G A. x e. dom dom G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( G e. Magma /\ G e. ExId ) -> ( X = dom dom G -> E. u e. dom dom G A. x e. dom dom G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) | 
						
							| 9 | 3 8 | sylbi |  |-  ( G e. ( Magma i^i ExId ) -> ( X = dom dom G -> E. u e. dom dom G A. x e. dom dom G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) | 
						
							| 10 |  | eqeq2 |  |-  ( ran G = dom dom G -> ( X = ran G <-> X = dom dom G ) ) | 
						
							| 11 |  | raleq |  |-  ( ran G = dom dom G -> ( A. x e. ran G ( ( u G x ) = x /\ ( x G u ) = x ) <-> A. x e. dom dom G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) | 
						
							| 12 | 11 | rexeqbi1dv |  |-  ( ran G = dom dom G -> ( E. u e. ran G A. x e. ran G ( ( u G x ) = x /\ ( x G u ) = x ) <-> E. u e. dom dom G A. x e. dom dom G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) | 
						
							| 13 | 10 12 | imbi12d |  |-  ( ran G = dom dom G -> ( ( X = ran G -> E. u e. ran G A. x e. ran G ( ( u G x ) = x /\ ( x G u ) = x ) ) <-> ( X = dom dom G -> E. u e. dom dom G A. x e. dom dom G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) ) | 
						
							| 14 | 9 13 | imbitrrid |  |-  ( ran G = dom dom G -> ( G e. ( Magma i^i ExId ) -> ( X = ran G -> E. u e. ran G A. x e. ran G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) ) | 
						
							| 15 | 2 14 | mpcom |  |-  ( G e. ( Magma i^i ExId ) -> ( X = ran G -> E. u e. ran G A. x e. ran G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) | 
						
							| 16 | 15 | com12 |  |-  ( X = ran G -> ( G e. ( Magma i^i ExId ) -> E. u e. ran G A. x e. ran G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) | 
						
							| 17 |  | raleq |  |-  ( X = ran G -> ( A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) <-> A. x e. ran G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) | 
						
							| 18 | 17 | rexeqbi1dv |  |-  ( X = ran G -> ( E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) <-> E. u e. ran G A. x e. ran G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) | 
						
							| 19 | 16 18 | sylibrd |  |-  ( X = ran G -> ( G e. ( Magma i^i ExId ) -> E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) | 
						
							| 20 | 1 19 | ax-mp |  |-  ( G e. ( Magma i^i ExId ) -> E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) |