| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isf32lem.a |
|- ( ph -> F : _om --> ~P G ) |
| 2 |
|
isf32lem.b |
|- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
| 3 |
|
isf32lem.c |
|- ( ph -> -. |^| ran F e. ran F ) |
| 4 |
|
fveq2 |
|- ( a = B -> ( F ` a ) = ( F ` B ) ) |
| 5 |
4
|
sseq1d |
|- ( a = B -> ( ( F ` a ) C_ ( F ` B ) <-> ( F ` B ) C_ ( F ` B ) ) ) |
| 6 |
5
|
imbi2d |
|- ( a = B -> ( ( ph -> ( F ` a ) C_ ( F ` B ) ) <-> ( ph -> ( F ` B ) C_ ( F ` B ) ) ) ) |
| 7 |
|
fveq2 |
|- ( a = b -> ( F ` a ) = ( F ` b ) ) |
| 8 |
7
|
sseq1d |
|- ( a = b -> ( ( F ` a ) C_ ( F ` B ) <-> ( F ` b ) C_ ( F ` B ) ) ) |
| 9 |
8
|
imbi2d |
|- ( a = b -> ( ( ph -> ( F ` a ) C_ ( F ` B ) ) <-> ( ph -> ( F ` b ) C_ ( F ` B ) ) ) ) |
| 10 |
|
fveq2 |
|- ( a = suc b -> ( F ` a ) = ( F ` suc b ) ) |
| 11 |
10
|
sseq1d |
|- ( a = suc b -> ( ( F ` a ) C_ ( F ` B ) <-> ( F ` suc b ) C_ ( F ` B ) ) ) |
| 12 |
11
|
imbi2d |
|- ( a = suc b -> ( ( ph -> ( F ` a ) C_ ( F ` B ) ) <-> ( ph -> ( F ` suc b ) C_ ( F ` B ) ) ) ) |
| 13 |
|
fveq2 |
|- ( a = A -> ( F ` a ) = ( F ` A ) ) |
| 14 |
13
|
sseq1d |
|- ( a = A -> ( ( F ` a ) C_ ( F ` B ) <-> ( F ` A ) C_ ( F ` B ) ) ) |
| 15 |
14
|
imbi2d |
|- ( a = A -> ( ( ph -> ( F ` a ) C_ ( F ` B ) ) <-> ( ph -> ( F ` A ) C_ ( F ` B ) ) ) ) |
| 16 |
|
ssid |
|- ( F ` B ) C_ ( F ` B ) |
| 17 |
16
|
2a1i |
|- ( B e. _om -> ( ph -> ( F ` B ) C_ ( F ` B ) ) ) |
| 18 |
|
suceq |
|- ( x = b -> suc x = suc b ) |
| 19 |
18
|
fveq2d |
|- ( x = b -> ( F ` suc x ) = ( F ` suc b ) ) |
| 20 |
|
fveq2 |
|- ( x = b -> ( F ` x ) = ( F ` b ) ) |
| 21 |
19 20
|
sseq12d |
|- ( x = b -> ( ( F ` suc x ) C_ ( F ` x ) <-> ( F ` suc b ) C_ ( F ` b ) ) ) |
| 22 |
21
|
rspcv |
|- ( b e. _om -> ( A. x e. _om ( F ` suc x ) C_ ( F ` x ) -> ( F ` suc b ) C_ ( F ` b ) ) ) |
| 23 |
2 22
|
syl5 |
|- ( b e. _om -> ( ph -> ( F ` suc b ) C_ ( F ` b ) ) ) |
| 24 |
23
|
ad2antrr |
|- ( ( ( b e. _om /\ B e. _om ) /\ B C_ b ) -> ( ph -> ( F ` suc b ) C_ ( F ` b ) ) ) |
| 25 |
|
sstr2 |
|- ( ( F ` suc b ) C_ ( F ` b ) -> ( ( F ` b ) C_ ( F ` B ) -> ( F ` suc b ) C_ ( F ` B ) ) ) |
| 26 |
24 25
|
syl6 |
|- ( ( ( b e. _om /\ B e. _om ) /\ B C_ b ) -> ( ph -> ( ( F ` b ) C_ ( F ` B ) -> ( F ` suc b ) C_ ( F ` B ) ) ) ) |
| 27 |
26
|
a2d |
|- ( ( ( b e. _om /\ B e. _om ) /\ B C_ b ) -> ( ( ph -> ( F ` b ) C_ ( F ` B ) ) -> ( ph -> ( F ` suc b ) C_ ( F ` B ) ) ) ) |
| 28 |
6 9 12 15 17 27
|
findsg |
|- ( ( ( A e. _om /\ B e. _om ) /\ B C_ A ) -> ( ph -> ( F ` A ) C_ ( F ` B ) ) ) |
| 29 |
28
|
impr |
|- ( ( ( A e. _om /\ B e. _om ) /\ ( B C_ A /\ ph ) ) -> ( F ` A ) C_ ( F ` B ) ) |