Step |
Hyp |
Ref |
Expression |
1 |
|
isf32lem40.f |
|- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
2 |
|
elmapi |
|- ( f e. ( ~P G ^m _om ) -> f : _om --> ~P G ) |
3 |
|
isf32lem11 |
|- ( ( G e. V /\ ( f : _om --> ~P G /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) /\ -. |^| ran f e. ran f ) ) -> _om ~<_* G ) |
4 |
3
|
expcom |
|- ( ( f : _om --> ~P G /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) /\ -. |^| ran f e. ran f ) -> ( G e. V -> _om ~<_* G ) ) |
5 |
4
|
3expa |
|- ( ( ( f : _om --> ~P G /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) /\ -. |^| ran f e. ran f ) -> ( G e. V -> _om ~<_* G ) ) |
6 |
5
|
impancom |
|- ( ( ( f : _om --> ~P G /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) /\ G e. V ) -> ( -. |^| ran f e. ran f -> _om ~<_* G ) ) |
7 |
6
|
con1d |
|- ( ( ( f : _om --> ~P G /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) /\ G e. V ) -> ( -. _om ~<_* G -> |^| ran f e. ran f ) ) |
8 |
7
|
exp31 |
|- ( f : _om --> ~P G -> ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> ( G e. V -> ( -. _om ~<_* G -> |^| ran f e. ran f ) ) ) ) |
9 |
2 8
|
syl |
|- ( f e. ( ~P G ^m _om ) -> ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> ( G e. V -> ( -. _om ~<_* G -> |^| ran f e. ran f ) ) ) ) |
10 |
9
|
com4t |
|- ( G e. V -> ( -. _om ~<_* G -> ( f e. ( ~P G ^m _om ) -> ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> |^| ran f e. ran f ) ) ) ) |
11 |
10
|
ralrimdv |
|- ( G e. V -> ( -. _om ~<_* G -> A. f e. ( ~P G ^m _om ) ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> |^| ran f e. ran f ) ) ) |
12 |
1
|
isfin3ds |
|- ( G e. V -> ( G e. F <-> A. f e. ( ~P G ^m _om ) ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> |^| ran f e. ran f ) ) ) |
13 |
11 12
|
sylibrd |
|- ( G e. V -> ( -. _om ~<_* G -> G e. F ) ) |