Step |
Hyp |
Ref |
Expression |
1 |
|
isf32lem.a |
|- ( ph -> F : _om --> ~P G ) |
2 |
|
isf32lem.b |
|- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
3 |
|
isf32lem.c |
|- ( ph -> -. |^| ran F e. ran F ) |
4 |
3
|
adantr |
|- ( ( ph /\ A e. _om ) -> -. |^| ran F e. ran F ) |
5 |
1
|
ffnd |
|- ( ph -> F Fn _om ) |
6 |
|
peano2 |
|- ( A e. _om -> suc A e. _om ) |
7 |
|
fnfvelrn |
|- ( ( F Fn _om /\ suc A e. _om ) -> ( F ` suc A ) e. ran F ) |
8 |
5 6 7
|
syl2an |
|- ( ( ph /\ A e. _om ) -> ( F ` suc A ) e. ran F ) |
9 |
8
|
adantr |
|- ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) -> ( F ` suc A ) e. ran F ) |
10 |
|
intss1 |
|- ( ( F ` suc A ) e. ran F -> |^| ran F C_ ( F ` suc A ) ) |
11 |
9 10
|
syl |
|- ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) -> |^| ran F C_ ( F ` suc A ) ) |
12 |
|
fvelrnb |
|- ( F Fn _om -> ( b e. ran F <-> E. c e. _om ( F ` c ) = b ) ) |
13 |
5 12
|
syl |
|- ( ph -> ( b e. ran F <-> E. c e. _om ( F ` c ) = b ) ) |
14 |
13
|
ad2antrr |
|- ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) -> ( b e. ran F <-> E. c e. _om ( F ` c ) = b ) ) |
15 |
|
simplrr |
|- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ suc A C_ c ) -> c e. _om ) |
16 |
6
|
ad3antlr |
|- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ suc A C_ c ) -> suc A e. _om ) |
17 |
|
simpr |
|- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ suc A C_ c ) -> suc A C_ c ) |
18 |
|
simplrl |
|- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ suc A C_ c ) -> A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) |
19 |
|
fveq2 |
|- ( b = suc A -> ( F ` b ) = ( F ` suc A ) ) |
20 |
19
|
eqeq2d |
|- ( b = suc A -> ( ( F ` suc A ) = ( F ` b ) <-> ( F ` suc A ) = ( F ` suc A ) ) ) |
21 |
20
|
imbi2d |
|- ( b = suc A -> ( ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` b ) ) <-> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` suc A ) ) ) ) |
22 |
|
fveq2 |
|- ( b = d -> ( F ` b ) = ( F ` d ) ) |
23 |
22
|
eqeq2d |
|- ( b = d -> ( ( F ` suc A ) = ( F ` b ) <-> ( F ` suc A ) = ( F ` d ) ) ) |
24 |
23
|
imbi2d |
|- ( b = d -> ( ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` b ) ) <-> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` d ) ) ) ) |
25 |
|
fveq2 |
|- ( b = suc d -> ( F ` b ) = ( F ` suc d ) ) |
26 |
25
|
eqeq2d |
|- ( b = suc d -> ( ( F ` suc A ) = ( F ` b ) <-> ( F ` suc A ) = ( F ` suc d ) ) ) |
27 |
26
|
imbi2d |
|- ( b = suc d -> ( ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` b ) ) <-> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` suc d ) ) ) ) |
28 |
|
fveq2 |
|- ( b = c -> ( F ` b ) = ( F ` c ) ) |
29 |
28
|
eqeq2d |
|- ( b = c -> ( ( F ` suc A ) = ( F ` b ) <-> ( F ` suc A ) = ( F ` c ) ) ) |
30 |
29
|
imbi2d |
|- ( b = c -> ( ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` b ) ) <-> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` c ) ) ) ) |
31 |
|
eqid |
|- ( F ` suc A ) = ( F ` suc A ) |
32 |
31
|
2a1i |
|- ( suc A e. _om -> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` suc A ) ) ) |
33 |
|
elex |
|- ( suc A e. _om -> suc A e. _V ) |
34 |
|
sucexb |
|- ( A e. _V <-> suc A e. _V ) |
35 |
33 34
|
sylibr |
|- ( suc A e. _om -> A e. _V ) |
36 |
35
|
adantl |
|- ( ( d e. _om /\ suc A e. _om ) -> A e. _V ) |
37 |
|
sucssel |
|- ( A e. _V -> ( suc A C_ d -> A e. d ) ) |
38 |
36 37
|
syl |
|- ( ( d e. _om /\ suc A e. _om ) -> ( suc A C_ d -> A e. d ) ) |
39 |
38
|
imp |
|- ( ( ( d e. _om /\ suc A e. _om ) /\ suc A C_ d ) -> A e. d ) |
40 |
|
eleq2w |
|- ( a = d -> ( A e. a <-> A e. d ) ) |
41 |
|
suceq |
|- ( a = d -> suc a = suc d ) |
42 |
41
|
fveq2d |
|- ( a = d -> ( F ` suc a ) = ( F ` suc d ) ) |
43 |
|
fveq2 |
|- ( a = d -> ( F ` a ) = ( F ` d ) ) |
44 |
42 43
|
eqeq12d |
|- ( a = d -> ( ( F ` suc a ) = ( F ` a ) <-> ( F ` suc d ) = ( F ` d ) ) ) |
45 |
40 44
|
imbi12d |
|- ( a = d -> ( ( A e. a -> ( F ` suc a ) = ( F ` a ) ) <-> ( A e. d -> ( F ` suc d ) = ( F ` d ) ) ) ) |
46 |
45
|
rspcv |
|- ( d e. _om -> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( A e. d -> ( F ` suc d ) = ( F ` d ) ) ) ) |
47 |
46
|
com23 |
|- ( d e. _om -> ( A e. d -> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc d ) = ( F ` d ) ) ) ) |
48 |
47
|
ad2antrr |
|- ( ( ( d e. _om /\ suc A e. _om ) /\ suc A C_ d ) -> ( A e. d -> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc d ) = ( F ` d ) ) ) ) |
49 |
39 48
|
mpd |
|- ( ( ( d e. _om /\ suc A e. _om ) /\ suc A C_ d ) -> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc d ) = ( F ` d ) ) ) |
50 |
|
eqtr3 |
|- ( ( ( F ` suc A ) = ( F ` d ) /\ ( F ` suc d ) = ( F ` d ) ) -> ( F ` suc A ) = ( F ` suc d ) ) |
51 |
50
|
expcom |
|- ( ( F ` suc d ) = ( F ` d ) -> ( ( F ` suc A ) = ( F ` d ) -> ( F ` suc A ) = ( F ` suc d ) ) ) |
52 |
49 51
|
syl6 |
|- ( ( ( d e. _om /\ suc A e. _om ) /\ suc A C_ d ) -> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( ( F ` suc A ) = ( F ` d ) -> ( F ` suc A ) = ( F ` suc d ) ) ) ) |
53 |
52
|
a2d |
|- ( ( ( d e. _om /\ suc A e. _om ) /\ suc A C_ d ) -> ( ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` d ) ) -> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` suc d ) ) ) ) |
54 |
21 24 27 30 32 53
|
findsg |
|- ( ( ( c e. _om /\ suc A e. _om ) /\ suc A C_ c ) -> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` c ) ) ) |
55 |
54
|
impr |
|- ( ( ( c e. _om /\ suc A e. _om ) /\ ( suc A C_ c /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) ) -> ( F ` suc A ) = ( F ` c ) ) |
56 |
15 16 17 18 55
|
syl22anc |
|- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ suc A C_ c ) -> ( F ` suc A ) = ( F ` c ) ) |
57 |
|
eqimss |
|- ( ( F ` suc A ) = ( F ` c ) -> ( F ` suc A ) C_ ( F ` c ) ) |
58 |
56 57
|
syl |
|- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ suc A C_ c ) -> ( F ` suc A ) C_ ( F ` c ) ) |
59 |
6
|
ad3antlr |
|- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ c C_ suc A ) -> suc A e. _om ) |
60 |
|
simplrr |
|- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ c C_ suc A ) -> c e. _om ) |
61 |
|
simpr |
|- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ c C_ suc A ) -> c C_ suc A ) |
62 |
|
simplll |
|- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ c C_ suc A ) -> ph ) |
63 |
1 2 3
|
isf32lem1 |
|- ( ( ( suc A e. _om /\ c e. _om ) /\ ( c C_ suc A /\ ph ) ) -> ( F ` suc A ) C_ ( F ` c ) ) |
64 |
59 60 61 62 63
|
syl22anc |
|- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ c C_ suc A ) -> ( F ` suc A ) C_ ( F ` c ) ) |
65 |
|
nnord |
|- ( suc A e. _om -> Ord suc A ) |
66 |
6 65
|
syl |
|- ( A e. _om -> Ord suc A ) |
67 |
66
|
ad2antlr |
|- ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) -> Ord suc A ) |
68 |
|
nnord |
|- ( c e. _om -> Ord c ) |
69 |
68
|
ad2antll |
|- ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) -> Ord c ) |
70 |
|
ordtri2or2 |
|- ( ( Ord suc A /\ Ord c ) -> ( suc A C_ c \/ c C_ suc A ) ) |
71 |
67 69 70
|
syl2anc |
|- ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) -> ( suc A C_ c \/ c C_ suc A ) ) |
72 |
58 64 71
|
mpjaodan |
|- ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) -> ( F ` suc A ) C_ ( F ` c ) ) |
73 |
72
|
anassrs |
|- ( ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) /\ c e. _om ) -> ( F ` suc A ) C_ ( F ` c ) ) |
74 |
|
sseq2 |
|- ( ( F ` c ) = b -> ( ( F ` suc A ) C_ ( F ` c ) <-> ( F ` suc A ) C_ b ) ) |
75 |
73 74
|
syl5ibcom |
|- ( ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) /\ c e. _om ) -> ( ( F ` c ) = b -> ( F ` suc A ) C_ b ) ) |
76 |
75
|
rexlimdva |
|- ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) -> ( E. c e. _om ( F ` c ) = b -> ( F ` suc A ) C_ b ) ) |
77 |
14 76
|
sylbid |
|- ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) -> ( b e. ran F -> ( F ` suc A ) C_ b ) ) |
78 |
77
|
ralrimiv |
|- ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) -> A. b e. ran F ( F ` suc A ) C_ b ) |
79 |
|
ssint |
|- ( ( F ` suc A ) C_ |^| ran F <-> A. b e. ran F ( F ` suc A ) C_ b ) |
80 |
78 79
|
sylibr |
|- ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) -> ( F ` suc A ) C_ |^| ran F ) |
81 |
11 80
|
eqssd |
|- ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) -> |^| ran F = ( F ` suc A ) ) |
82 |
81 9
|
eqeltrd |
|- ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) -> |^| ran F e. ran F ) |
83 |
4 82
|
mtand |
|- ( ( ph /\ A e. _om ) -> -. A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) |
84 |
|
rexnal |
|- ( E. a e. _om -. ( A e. a -> ( F ` suc a ) = ( F ` a ) ) <-> -. A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) |
85 |
83 84
|
sylibr |
|- ( ( ph /\ A e. _om ) -> E. a e. _om -. ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) |
86 |
|
suceq |
|- ( x = a -> suc x = suc a ) |
87 |
86
|
fveq2d |
|- ( x = a -> ( F ` suc x ) = ( F ` suc a ) ) |
88 |
|
fveq2 |
|- ( x = a -> ( F ` x ) = ( F ` a ) ) |
89 |
87 88
|
sseq12d |
|- ( x = a -> ( ( F ` suc x ) C_ ( F ` x ) <-> ( F ` suc a ) C_ ( F ` a ) ) ) |
90 |
89
|
cbvralvw |
|- ( A. x e. _om ( F ` suc x ) C_ ( F ` x ) <-> A. a e. _om ( F ` suc a ) C_ ( F ` a ) ) |
91 |
2 90
|
sylib |
|- ( ph -> A. a e. _om ( F ` suc a ) C_ ( F ` a ) ) |
92 |
91
|
adantr |
|- ( ( ph /\ A e. _om ) -> A. a e. _om ( F ` suc a ) C_ ( F ` a ) ) |
93 |
|
pm4.61 |
|- ( -. ( A e. a -> ( F ` suc a ) = ( F ` a ) ) <-> ( A e. a /\ -. ( F ` suc a ) = ( F ` a ) ) ) |
94 |
|
dfpss2 |
|- ( ( F ` suc a ) C. ( F ` a ) <-> ( ( F ` suc a ) C_ ( F ` a ) /\ -. ( F ` suc a ) = ( F ` a ) ) ) |
95 |
94
|
simplbi2 |
|- ( ( F ` suc a ) C_ ( F ` a ) -> ( -. ( F ` suc a ) = ( F ` a ) -> ( F ` suc a ) C. ( F ` a ) ) ) |
96 |
95
|
anim2d |
|- ( ( F ` suc a ) C_ ( F ` a ) -> ( ( A e. a /\ -. ( F ` suc a ) = ( F ` a ) ) -> ( A e. a /\ ( F ` suc a ) C. ( F ` a ) ) ) ) |
97 |
93 96
|
syl5bi |
|- ( ( F ` suc a ) C_ ( F ` a ) -> ( -. ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( A e. a /\ ( F ` suc a ) C. ( F ` a ) ) ) ) |
98 |
97
|
ralimi |
|- ( A. a e. _om ( F ` suc a ) C_ ( F ` a ) -> A. a e. _om ( -. ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( A e. a /\ ( F ` suc a ) C. ( F ` a ) ) ) ) |
99 |
|
rexim |
|- ( A. a e. _om ( -. ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( A e. a /\ ( F ` suc a ) C. ( F ` a ) ) ) -> ( E. a e. _om -. ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> E. a e. _om ( A e. a /\ ( F ` suc a ) C. ( F ` a ) ) ) ) |
100 |
92 98 99
|
3syl |
|- ( ( ph /\ A e. _om ) -> ( E. a e. _om -. ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> E. a e. _om ( A e. a /\ ( F ` suc a ) C. ( F ` a ) ) ) ) |
101 |
85 100
|
mpd |
|- ( ( ph /\ A e. _om ) -> E. a e. _om ( A e. a /\ ( F ` suc a ) C. ( F ` a ) ) ) |