| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isf32lem.a |
|- ( ph -> F : _om --> ~P G ) |
| 2 |
|
isf32lem.b |
|- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
| 3 |
|
isf32lem.c |
|- ( ph -> -. |^| ran F e. ran F ) |
| 4 |
|
simplrr |
|- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ A e. B ) -> B e. _om ) |
| 5 |
|
simplrl |
|- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ A e. B ) -> A e. _om ) |
| 6 |
|
simpr |
|- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ A e. B ) -> A e. B ) |
| 7 |
|
simplll |
|- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ A e. B ) -> ph ) |
| 8 |
|
incom |
|- ( ( ( F ` A ) \ ( F ` suc A ) ) i^i ( ( F ` B ) \ ( F ` suc B ) ) ) = ( ( ( F ` B ) \ ( F ` suc B ) ) i^i ( ( F ` A ) \ ( F ` suc A ) ) ) |
| 9 |
1 2 3
|
isf32lem3 |
|- ( ( ( B e. _om /\ A e. _om ) /\ ( A e. B /\ ph ) ) -> ( ( ( F ` B ) \ ( F ` suc B ) ) i^i ( ( F ` A ) \ ( F ` suc A ) ) ) = (/) ) |
| 10 |
8 9
|
eqtrid |
|- ( ( ( B e. _om /\ A e. _om ) /\ ( A e. B /\ ph ) ) -> ( ( ( F ` A ) \ ( F ` suc A ) ) i^i ( ( F ` B ) \ ( F ` suc B ) ) ) = (/) ) |
| 11 |
4 5 6 7 10
|
syl22anc |
|- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ A e. B ) -> ( ( ( F ` A ) \ ( F ` suc A ) ) i^i ( ( F ` B ) \ ( F ` suc B ) ) ) = (/) ) |
| 12 |
|
simplrl |
|- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ B e. A ) -> A e. _om ) |
| 13 |
|
simplrr |
|- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ B e. A ) -> B e. _om ) |
| 14 |
|
simpr |
|- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ B e. A ) -> B e. A ) |
| 15 |
|
simplll |
|- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ B e. A ) -> ph ) |
| 16 |
1 2 3
|
isf32lem3 |
|- ( ( ( A e. _om /\ B e. _om ) /\ ( B e. A /\ ph ) ) -> ( ( ( F ` A ) \ ( F ` suc A ) ) i^i ( ( F ` B ) \ ( F ` suc B ) ) ) = (/) ) |
| 17 |
12 13 14 15 16
|
syl22anc |
|- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ B e. A ) -> ( ( ( F ` A ) \ ( F ` suc A ) ) i^i ( ( F ` B ) \ ( F ` suc B ) ) ) = (/) ) |
| 18 |
|
simplr |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> A =/= B ) |
| 19 |
|
nnord |
|- ( A e. _om -> Ord A ) |
| 20 |
|
nnord |
|- ( B e. _om -> Ord B ) |
| 21 |
|
ordtri3 |
|- ( ( Ord A /\ Ord B ) -> ( A = B <-> -. ( A e. B \/ B e. A ) ) ) |
| 22 |
19 20 21
|
syl2an |
|- ( ( A e. _om /\ B e. _om ) -> ( A = B <-> -. ( A e. B \/ B e. A ) ) ) |
| 23 |
22
|
adantl |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( A = B <-> -. ( A e. B \/ B e. A ) ) ) |
| 24 |
23
|
necon2abid |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( A e. B \/ B e. A ) <-> A =/= B ) ) |
| 25 |
18 24
|
mpbird |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( A e. B \/ B e. A ) ) |
| 26 |
11 17 25
|
mpjaodan |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( ( F ` A ) \ ( F ` suc A ) ) i^i ( ( F ` B ) \ ( F ` suc B ) ) ) = (/) ) |