Metamath Proof Explorer


Theorem isf32lem7

Description: Lemma for isfin3-2 . Different K values are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014)

Ref Expression
Hypotheses isf32lem.a
|- ( ph -> F : _om --> ~P G )
isf32lem.b
|- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) )
isf32lem.c
|- ( ph -> -. |^| ran F e. ran F )
isf32lem.d
|- S = { y e. _om | ( F ` suc y ) C. ( F ` y ) }
isf32lem.e
|- J = ( u e. _om |-> ( iota_ v e. S ( v i^i S ) ~~ u ) )
isf32lem.f
|- K = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J )
Assertion isf32lem7
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( K ` A ) i^i ( K ` B ) ) = (/) )

Proof

Step Hyp Ref Expression
1 isf32lem.a
 |-  ( ph -> F : _om --> ~P G )
2 isf32lem.b
 |-  ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) )
3 isf32lem.c
 |-  ( ph -> -. |^| ran F e. ran F )
4 isf32lem.d
 |-  S = { y e. _om | ( F ` suc y ) C. ( F ` y ) }
5 isf32lem.e
 |-  J = ( u e. _om |-> ( iota_ v e. S ( v i^i S ) ~~ u ) )
6 isf32lem.f
 |-  K = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J )
7 6 fveq1i
 |-  ( K ` A ) = ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A )
8 4 ssrab3
 |-  S C_ _om
9 1 2 3 4 isf32lem5
 |-  ( ph -> -. S e. Fin )
10 5 fin23lem22
 |-  ( ( S C_ _om /\ -. S e. Fin ) -> J : _om -1-1-onto-> S )
11 8 9 10 sylancr
 |-  ( ph -> J : _om -1-1-onto-> S )
12 f1of
 |-  ( J : _om -1-1-onto-> S -> J : _om --> S )
13 11 12 syl
 |-  ( ph -> J : _om --> S )
14 fvco3
 |-  ( ( J : _om --> S /\ A e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) )
15 13 14 sylan
 |-  ( ( ph /\ A e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) )
16 15 ad2ant2r
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) )
17 13 adantr
 |-  ( ( ph /\ A =/= B ) -> J : _om --> S )
18 simpl
 |-  ( ( A e. _om /\ B e. _om ) -> A e. _om )
19 ffvelrn
 |-  ( ( J : _om --> S /\ A e. _om ) -> ( J ` A ) e. S )
20 17 18 19 syl2an
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( J ` A ) e. S )
21 fveq2
 |-  ( w = ( J ` A ) -> ( F ` w ) = ( F ` ( J ` A ) ) )
22 suceq
 |-  ( w = ( J ` A ) -> suc w = suc ( J ` A ) )
23 22 fveq2d
 |-  ( w = ( J ` A ) -> ( F ` suc w ) = ( F ` suc ( J ` A ) ) )
24 21 23 difeq12d
 |-  ( w = ( J ` A ) -> ( ( F ` w ) \ ( F ` suc w ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) )
25 eqid
 |-  ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) = ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) )
26 fvex
 |-  ( F ` ( J ` A ) ) e. _V
27 26 difexi
 |-  ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) e. _V
28 24 25 27 fvmpt
 |-  ( ( J ` A ) e. S -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) )
29 20 28 syl
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) )
30 16 29 eqtrd
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) )
31 7 30 eqtrid
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( K ` A ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) )
32 6 fveq1i
 |-  ( K ` B ) = ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` B )
33 fvco3
 |-  ( ( J : _om --> S /\ B e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` B ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` B ) ) )
34 13 33 sylan
 |-  ( ( ph /\ B e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` B ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` B ) ) )
35 34 ad2ant2rl
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` B ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` B ) ) )
36 simpr
 |-  ( ( A e. _om /\ B e. _om ) -> B e. _om )
37 ffvelrn
 |-  ( ( J : _om --> S /\ B e. _om ) -> ( J ` B ) e. S )
38 17 36 37 syl2an
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( J ` B ) e. S )
39 fveq2
 |-  ( w = ( J ` B ) -> ( F ` w ) = ( F ` ( J ` B ) ) )
40 suceq
 |-  ( w = ( J ` B ) -> suc w = suc ( J ` B ) )
41 40 fveq2d
 |-  ( w = ( J ` B ) -> ( F ` suc w ) = ( F ` suc ( J ` B ) ) )
42 39 41 difeq12d
 |-  ( w = ( J ` B ) -> ( ( F ` w ) \ ( F ` suc w ) ) = ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) )
43 fvex
 |-  ( F ` ( J ` B ) ) e. _V
44 43 difexi
 |-  ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) e. _V
45 42 25 44 fvmpt
 |-  ( ( J ` B ) e. S -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` B ) ) = ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) )
46 38 45 syl
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` B ) ) = ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) )
47 35 46 eqtrd
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` B ) = ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) )
48 32 47 eqtrid
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( K ` B ) = ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) )
49 31 48 ineq12d
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( K ` A ) i^i ( K ` B ) ) = ( ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) i^i ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) ) )
50 simpll
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ph )
51 simplr
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> A =/= B )
52 f1of1
 |-  ( J : _om -1-1-onto-> S -> J : _om -1-1-> S )
53 11 52 syl
 |-  ( ph -> J : _om -1-1-> S )
54 53 adantr
 |-  ( ( ph /\ A =/= B ) -> J : _om -1-1-> S )
55 f1fveq
 |-  ( ( J : _om -1-1-> S /\ ( A e. _om /\ B e. _om ) ) -> ( ( J ` A ) = ( J ` B ) <-> A = B ) )
56 54 55 sylan
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( J ` A ) = ( J ` B ) <-> A = B ) )
57 56 biimpd
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( J ` A ) = ( J ` B ) -> A = B ) )
58 57 necon3d
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( A =/= B -> ( J ` A ) =/= ( J ` B ) ) )
59 51 58 mpd
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( J ` A ) =/= ( J ` B ) )
60 8 20 sselid
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( J ` A ) e. _om )
61 8 38 sselid
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( J ` B ) e. _om )
62 1 2 3 isf32lem4
 |-  ( ( ( ph /\ ( J ` A ) =/= ( J ` B ) ) /\ ( ( J ` A ) e. _om /\ ( J ` B ) e. _om ) ) -> ( ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) i^i ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) ) = (/) )
63 50 59 60 61 62 syl22anc
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) i^i ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) ) = (/) )
64 49 63 eqtrd
 |-  ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( K ` A ) i^i ( K ` B ) ) = (/) )