| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isf32lem.a |
|- ( ph -> F : _om --> ~P G ) |
| 2 |
|
isf32lem.b |
|- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
| 3 |
|
isf32lem.c |
|- ( ph -> -. |^| ran F e. ran F ) |
| 4 |
|
isf32lem.d |
|- S = { y e. _om | ( F ` suc y ) C. ( F ` y ) } |
| 5 |
|
isf32lem.e |
|- J = ( u e. _om |-> ( iota_ v e. S ( v i^i S ) ~~ u ) ) |
| 6 |
|
isf32lem.f |
|- K = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) |
| 7 |
6
|
fveq1i |
|- ( K ` A ) = ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) |
| 8 |
4
|
ssrab3 |
|- S C_ _om |
| 9 |
1 2 3 4
|
isf32lem5 |
|- ( ph -> -. S e. Fin ) |
| 10 |
5
|
fin23lem22 |
|- ( ( S C_ _om /\ -. S e. Fin ) -> J : _om -1-1-onto-> S ) |
| 11 |
8 9 10
|
sylancr |
|- ( ph -> J : _om -1-1-onto-> S ) |
| 12 |
|
f1of |
|- ( J : _om -1-1-onto-> S -> J : _om --> S ) |
| 13 |
11 12
|
syl |
|- ( ph -> J : _om --> S ) |
| 14 |
|
fvco3 |
|- ( ( J : _om --> S /\ A e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) ) |
| 15 |
13 14
|
sylan |
|- ( ( ph /\ A e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) ) |
| 16 |
15
|
ad2ant2r |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) ) |
| 17 |
13
|
adantr |
|- ( ( ph /\ A =/= B ) -> J : _om --> S ) |
| 18 |
|
simpl |
|- ( ( A e. _om /\ B e. _om ) -> A e. _om ) |
| 19 |
|
ffvelcdm |
|- ( ( J : _om --> S /\ A e. _om ) -> ( J ` A ) e. S ) |
| 20 |
17 18 19
|
syl2an |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( J ` A ) e. S ) |
| 21 |
|
fveq2 |
|- ( w = ( J ` A ) -> ( F ` w ) = ( F ` ( J ` A ) ) ) |
| 22 |
|
suceq |
|- ( w = ( J ` A ) -> suc w = suc ( J ` A ) ) |
| 23 |
22
|
fveq2d |
|- ( w = ( J ` A ) -> ( F ` suc w ) = ( F ` suc ( J ` A ) ) ) |
| 24 |
21 23
|
difeq12d |
|- ( w = ( J ` A ) -> ( ( F ` w ) \ ( F ` suc w ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 25 |
|
eqid |
|- ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) = ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) |
| 26 |
|
fvex |
|- ( F ` ( J ` A ) ) e. _V |
| 27 |
26
|
difexi |
|- ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) e. _V |
| 28 |
24 25 27
|
fvmpt |
|- ( ( J ` A ) e. S -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 29 |
20 28
|
syl |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 30 |
16 29
|
eqtrd |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 31 |
7 30
|
eqtrid |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( K ` A ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 32 |
6
|
fveq1i |
|- ( K ` B ) = ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` B ) |
| 33 |
|
fvco3 |
|- ( ( J : _om --> S /\ B e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` B ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` B ) ) ) |
| 34 |
13 33
|
sylan |
|- ( ( ph /\ B e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` B ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` B ) ) ) |
| 35 |
34
|
ad2ant2rl |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` B ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` B ) ) ) |
| 36 |
|
simpr |
|- ( ( A e. _om /\ B e. _om ) -> B e. _om ) |
| 37 |
|
ffvelcdm |
|- ( ( J : _om --> S /\ B e. _om ) -> ( J ` B ) e. S ) |
| 38 |
17 36 37
|
syl2an |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( J ` B ) e. S ) |
| 39 |
|
fveq2 |
|- ( w = ( J ` B ) -> ( F ` w ) = ( F ` ( J ` B ) ) ) |
| 40 |
|
suceq |
|- ( w = ( J ` B ) -> suc w = suc ( J ` B ) ) |
| 41 |
40
|
fveq2d |
|- ( w = ( J ` B ) -> ( F ` suc w ) = ( F ` suc ( J ` B ) ) ) |
| 42 |
39 41
|
difeq12d |
|- ( w = ( J ` B ) -> ( ( F ` w ) \ ( F ` suc w ) ) = ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) ) |
| 43 |
|
fvex |
|- ( F ` ( J ` B ) ) e. _V |
| 44 |
43
|
difexi |
|- ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) e. _V |
| 45 |
42 25 44
|
fvmpt |
|- ( ( J ` B ) e. S -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` B ) ) = ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) ) |
| 46 |
38 45
|
syl |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` B ) ) = ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) ) |
| 47 |
35 46
|
eqtrd |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` B ) = ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) ) |
| 48 |
32 47
|
eqtrid |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( K ` B ) = ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) ) |
| 49 |
31 48
|
ineq12d |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( K ` A ) i^i ( K ` B ) ) = ( ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) i^i ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) ) ) |
| 50 |
|
simpll |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ph ) |
| 51 |
|
simplr |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> A =/= B ) |
| 52 |
|
f1of1 |
|- ( J : _om -1-1-onto-> S -> J : _om -1-1-> S ) |
| 53 |
11 52
|
syl |
|- ( ph -> J : _om -1-1-> S ) |
| 54 |
53
|
adantr |
|- ( ( ph /\ A =/= B ) -> J : _om -1-1-> S ) |
| 55 |
|
f1fveq |
|- ( ( J : _om -1-1-> S /\ ( A e. _om /\ B e. _om ) ) -> ( ( J ` A ) = ( J ` B ) <-> A = B ) ) |
| 56 |
54 55
|
sylan |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( J ` A ) = ( J ` B ) <-> A = B ) ) |
| 57 |
56
|
biimpd |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( J ` A ) = ( J ` B ) -> A = B ) ) |
| 58 |
57
|
necon3d |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( A =/= B -> ( J ` A ) =/= ( J ` B ) ) ) |
| 59 |
51 58
|
mpd |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( J ` A ) =/= ( J ` B ) ) |
| 60 |
8 20
|
sselid |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( J ` A ) e. _om ) |
| 61 |
8 38
|
sselid |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( J ` B ) e. _om ) |
| 62 |
1 2 3
|
isf32lem4 |
|- ( ( ( ph /\ ( J ` A ) =/= ( J ` B ) ) /\ ( ( J ` A ) e. _om /\ ( J ` B ) e. _om ) ) -> ( ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) i^i ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) ) = (/) ) |
| 63 |
50 59 60 61 62
|
syl22anc |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) i^i ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) ) = (/) ) |
| 64 |
49 63
|
eqtrd |
|- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( K ` A ) i^i ( K ` B ) ) = (/) ) |